版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,点是的角平分线上一点,于点,点是线段上一点.已知,,点为上一点.若满足,则的长度为()A.3 B.5 C.5和7 D.3或72.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()A.8cm B.10cm C.12cm D.14cm3.如图,在中,平分交于点,平分,,交于点,若,则()A.75 B.100 C.120 D.1254.反映东方学校六年级各班的人数,选用()统计图比较好.A.折线 B.条形 C.扇形 D.无法判断5.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为().A.(﹣2,﹣3) B.(2,﹣3) C.(﹣3,﹣2) D.(3,﹣2)6.在平面直角坐标系中,点P(﹣3,2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知三角形两边长分别为5cm和16cm,则下列线段中能作为该三角形第三边的是()A.24cm B.15cm C.11cm D.8cm8.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于点D,DE⊥AB于点E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.以上都不对9.若二次根式有意义,且关于的分式方程有正数解,则符合条件的整数的和是()A.-7 B.-6 C.-5 D.-410.若把分式中的x与y都扩大3倍,则所得分式的值()A.缩小为原来的 B.缩小为原来的C.扩大为原来的3倍 D.不变二、填空题(每小题3分,共24分)11.某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为__________.12.已知,则的值是__________.13.已知与成正比例,且当时,则与的函数关系式为______14.7_____3(填>,<或=)15.若的整数部分为,则满足条件的奇数有_______个.16.已知等腰三角形的一个外角是80°,则它顶角的度数为______.17.已知,则__________.18.分解因式:ax2+2ax+a=____________.三、解答题(共66分)19.(10分)先化简,然后从中选出一个合适的整数作为的值代入求值.20.(6分)阅读下面的解题过程,求的最小值.解:∵=,而,即最小值是0;∴的最小值是5依照上面解答过程,(1)求的最小值;(2)求的最大值.21.(6分)在四边形中,,,是对角线,于点,于点(1)如图1,求证:(2)如图2,当时,连接、,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形,使写出的每个三角形的面积都等于四边形面积的.22.(8分)在平面直角坐标系中,点A、B分别在x轴和y轴的正半轴上,OA=OB,AB=6.(1)求AB所在直线的函数表达式;(2)如图,以OA,OB为边在第一象限作正方形OACB,点M(x,0)是x轴上的动点,连接BM.①当点M在边OA上时,作点O关于BM的对称点O′,若点O′恰好落在AB上,求△OBM的面积;②将射线MB绕点M顺时针旋转45°得到射线MN,射线MN与正方形OACB边的交点为N.若在点M的运动过程中,存在x的值,使得△MBN为等腰三角形,请直接写出x所有可能的结果.23.(8分)为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)补全频数分布直方图;(2)表示户外活动时间1小时的扇形圆心角的度数是多少;(3)本次调查学生参加户外活动时间的众数是多少,中位数是多少;(4)本次调查学生参加户外活动的平均时间是否符合要求?24.(8分)如图,点在线段上,,,.平分.求证:(1);(2).25.(10分)如图,已知:在坐标平面内,等腰直角中,,,点的坐标为,点的坐标为,交轴于点.(1)求点的坐标;(2)求点的坐标;(3)如图,点在轴上,当的周长最小时,求出点的坐标;(4)在直线上有点,在轴上有点,求出的最小值.26.(10分)解下列方程组:
参考答案一、选择题(每小题3分,共30分)1、D【分析】过点P作PE⊥AO于E,根据角平分线的性质和定义可得PE=PN,∠POE=∠PON,∠PEO=∠PNO=90°,再根据角平分线的性质可得OE=ON=5,然后根据点D与点E的先对位置分类讨论,分别画出对应的图形,利用HL证出Rt△PDE≌Rt△PMN,可得DE=MN,即可求出OD.【详解】解:过点P作PE⊥AO于E∵OC平分∠AOB,,∴PE=PN,∠POE=∠PON,∠PEO=∠PNO=90°∴∠OPE=90°-∠POE=90°-∠PON=∠OPN∴PO平分∠EPN∴OE=ON=5①若点D在点E左下方时,连接PD,如下图所示在Rt△PDE和Rt△PMN中∴Rt△PDE≌Rt△PMN∴DE=MN∵MN=ON-OM=2∴DE=2∴OD=OE-DE=3②若点D在点E右上方时,连接PD,如下图所示在Rt△PDE和Rt△PMN中∴Rt△PDE≌Rt△PMN∴DE=MN∵MN=ON-OM=2∴DE=2∴OD=OE+DE=1综上所述:OD=3或1.故选D.【点睛】此题考查的是角平分线的性质和全等三角形的判定及性质,掌握角平分线的性质、构造全等三角形的方法、全等三角形的判定及性质和分类讨论的数学思想是解决此题的关键.2、B【解析】根据“AAS”证明
ΔABD≌ΔEBD
.得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求其周长.【详解】∵BD是∠ABC的平分线,∴∠ABD=∠EBD.又∵∠A=∠DEB=90°,BD是公共边,∴△ABD≌△EBD(AAS),∴AD=ED,AB=BE,∴△DEC的周长是DE+EC+DC=AD+DC+EC=AC+EC=AB+EC=BE+EC=BC=10cm.故选B.【点睛】本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质.掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.3、B【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理求得CE1+CF1=EF1.【详解】∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE1+CF1=EF1=2.故选:B【点睛】本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用.4、B【分析】条形统计图是用一个单位长度表示一定的数量,从条形统计图中很容易看出各种数量的多少.【详解】反映东方学校六年级各班的人数,选用条形统计图比较好.
故选:B.【点睛】本题主要考查了统计图的选择,条形统计图是用一个单位长度表示一定的数量,从条形统计图中很容易看出各种数量的多少;扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,可以很清楚的表示出各部分数量同总数之间的关系.折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况.5、A【分析】根据关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论.【详解】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3)故选A.【点睛】此题考查的是求一个点关于x轴对称点的坐标,掌握关于x轴对称的两点坐标关系是解决此题的关键.6、B【分析】根据各象限的点的坐标的符号特征判断即可.【详解】∵-3<0,2>0,∴点P(﹣3,2)在第二象限,故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.7、B【分析】先根据三角形三边关系得出第三边的取值范围,然后从选项中选择范围内的数即可.【详解】∵三角形两边长分别为5cm和16cm,∴第三边的取值范围为,即,而四个选项中只有15cm在内,故选:B.【点睛】本题主要考查三角形三边关系,掌握三角形三边关系是解题的关键.8、B【分析】根据角平分线上的点到角的两边的距离相等可得CD=DE,根据全等三角形对应边相等可得AC=AE,求出△DEB的周长=AB.【详解】解:∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE,在△ACD和△AED中,,∴△ACD≌△AED(HL),∴AC=AE,∴可得△DEB的周长=BD+DE+BE,=BD+CD+BE,=BC+BE,=AC+BE,=AE+BE,=AB,∵AB=6cm,∴△DEB的周长为6cm.故选:B.【点睛】角平分线上的点到角的两边的距离相等与根据HL证明全等,等量代换理清逻辑。9、A【分析】根据二次根式有意义得出m的范围,根据分式方程有正数解得出x的范围,继而可得整数m的值.【详解】解:解分式方程,,,∵分式方程有正数解,∴∴,∵有意义,∴,∴,∴符合条件的m的值有:-4,-3,-2,-1,0,1,2,和为-7.故选A.【点睛】本题主要考查分式方程的解和二次根式有意义的条件,熟练掌握解分式方程和二次根式的性质,并根据题意得到关于m的范围是解题的关键.10、A【分析】根据分式的基本性质即可求出答案.【详解】解:原式==,故选:A.【点睛】本题考查分式的基本性质,关键在于熟记基本性质.二、填空题(每小题3分,共24分)11、【分析】设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据“原计划所用时间﹣实际所用时间=8”列方程即可.【详解】解:设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x棵,根据题意可得:,故答案为.12、7【分析】已知等式两边平方,利用完全平方公式展开,变形即可求出所求式子的值.【详解】将两边平方得:,即:,解得:=7,故填7.【点睛】此题考查了完全平方公式,熟练掌握公式是解本题的关键.13、【分析】已知y-2与x成正比例,且当x=-1时y=5,用待定系数法可求出函数关系式.【详解】y-2与x成正比例,即:且当x=-1时y=5,则得到:则与的函数关系式为:故答案为:.【点睛】本题考查了求函数关系式的问题,掌握待定系数法是解题的关键.14、<.【解析】将3转化为9,再比较大小即可得出结论.【详解】∵3=9,∴7<9,∴7<3.故答案为<.【点睛】本题考查了实数的大小比较,解题的关键是熟练的掌握实数的大小比较方法.15、9【分析】的整数部分为,则可求出a的取值范围,即可得到答案.【详解】解:的整数部分为,则a的取值范围8<a<27所以得到奇数有:9、11、13、15、17、19、21、23、25共9个故答案为:9【点睛】此题主要考查了估算无理数的大小,估算是我们具备的数学能力,“夹逼法”是估算的一般方法.16、100°.【分析】三角形内角与相邻的外角和为180,三角形内角和为180,等腰三角形两底角相等,100只可能是顶角.【详解】等腰三角形一个外角为80,那相邻的内角为100,三角形内角和为180,如果这个内角为底角,内角和将超过180,所以100只可能是顶角.故答案为:100.【点睛】本题主要考查三角形外角性质、等腰三角形性质及三角形内角和定理;判断出80的外角只能是顶角的外角是正确解答本题的关键.17、-.【分析】,把a+b=-3ab代入分式,化简求值即可.【详解】解:,
把a+b=-3ab代入分式,得
=
=
=
=-.
故答案为:-.【点睛】此题考查分式的值,掌握整体代入法进行化简是解题的关键.18、a(x+1)1【解析】ax1+1ax+a=a(x1+1x+1)=a(x+1)1.三、解答题(共66分)19、-1【解析】先化简,再选出一个合适的整数代入即可,要注意a的取值范围.【详解】解:,当时,原式.【点睛】本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.20、(1)2019;(2)1.【分析】(1)利用完全平方公式把原式变形,根据偶次方的非负性解答即可;(2)利用完全平方公式把原式变形,利用非负数的性质解答即可;【详解】(1)∵,∴,∴的最小值为2019;(2),∵,∴,∴,∴的最大值是1.【点睛】本题考查的是配方法的应用,掌握完全平方公式和偶次方的非负性是解题的关键.21、(1)详见解析;(2).【分析】(1)根据平行线的性质可得,然后根据AAS即可证得结论;(2)由已知条件、直角三角形的性质和平行线的性质可依次得出∠BAE=30°,∠ABE=60°,∠ADB=30°,然后利用30°角的直角三角形的性质可得BE与AB,AE与AD的关系,进而可得△ABE的面积=四边形ABCD的面积,即得△CDF的面积与四边形ABCD的面积的关系;作EG⊥BC于G,由直角三角形的性质得出EG与AB的关系,进而可得△BCE的面积=四边形ABCD的面积,同理可得△ADF的面积与四边形ABCD的面积的关系,问题即得解决.【详解】(1)证明:,,,,,≌(AAS),;(2)△ABE的面积=△CDF的面积=△BCE的面积=△ADF的面积=四边形ABCD面积的.理由如下:∵AD=BC,,DB=BD,∴△ADB≌△CBD,∴四边形ABCD的面积=2×△ABD的面积=AB×AD,∵,∴∠BAE=30°,∴∠ABE=60°,∠ADB=30°,∴BE=AB,AE=AD,∴△ABE的面积=BE×AE=×AB×AD=AB×AD=四边形ABCD的面积;∵△ABE≌△CDF,∴△CDF的面积═四边形ABCD的面积;作EG⊥BC于G,如图所示:∵∠CBD=∠ADB=30°,∴EG=BE=×AB=AB,∴△BCE的面积=BC×EG=BC×AB=BC×AB=四边形ABCD的面积,同理:△ADF的面积=矩形ABCD的面积.【点睛】本题考查了全等三角形的判定与性质、含30°角的直角三角形的性质、平行线的性质、三角形面积公式等知识;熟练掌握30°角的直角三角形的性质和全等三角形的判定与性质是解题的关键.22、(1)y=-x+6;(2)①S△BOM=;②当-6≤x≤0,x=6,x=时,△MBN为等腰三角形.【分析】(1)由题意可以求出A、B的坐标,再利用待定系数法可以得到AB所在直线的函数表达式;
(2)①由已知可以求出OM的值,从而得到△OBM的面积;
②根据已知条件将M在x轴上运动,可以得到△MBN为等腰三角形时x所有可能的结果.
【详解】(1)∵OA=OB,AB=6,∴A(6,0),B(0,6).设AB所在直线为y=kx+b,将点A,B坐标代入得,,解得:,∴AB所在直线的函数表达式为y=-x+6.(2)①如图,∵由轴对称性可知,BO′=BO=6,在等腰Rt△AMO′中,AO′=,∴OM=O′M=,∴S△BOM=·OB·OM=×6×()=.
②如图,当-6≤x≤0时,BM=BN;
如图,当x=6时,M与A重合,N与C重合,NB=NM;
如图,当x=时,MB=MN.
∴当-6≤x≤0,x=6,x=时,△MBN为等腰三角形.【点睛】本题考查正方形的动点问题,通过建立直角坐标系,利用数形结合的思想对问题进行讨论是解题关键.23、(1)频数分布直方图如图所示;见解析;(2)在扇形统计图中的圆心角度数为144°;(3)1小时,1小时;(4)平均活动时间符合要求.【分析】(1)先根据条形统计图和扇形统计图的数据,由活动时间为0.5小时的数据求出参加活动的总人数,然后求出户外活动时间为1.5小时的人数;(2)先根据户外活动时间为1小时的人数,求出其占总人数的百分比,然后算出其在扇形统计图中的圆心角度数;(3)根据中位数和众数的概念,求解即可.(4)根据平均时间=总时间÷总人数,求出平均时间与1小时进行比较,然后判断是否符合要求;【详解】(1)调查总人数为:10÷20%=50(人),户外活动时间为1.5小时的人数为:50×24%=12(人),频数分布直方图如右图所示;(2)户外活动时间为1小时的人数占总人数的百分比为:×100%=40%,在扇形统计图中的圆心角度数为:40%×360°=144°.(3)将50人的户外活动时间按照从小到大的顺序排列,可知第25和第26人的户外运动时间都为1小时,故本次户外活动时间的中位数为1小时;由频数分布直方图可知,户外活动时间为1小时的人数最多,故本次户外活动时间的众数为1小时.(4)户外活动的平均时间为:×(10×0.5+20×1+12×1.5+8×2)=1.18(小时),∵1.18>1,∴平均活动时间符合要求.【点睛】本题考查的是统计图,熟练掌握直方图和扇形统计图是解题的关键.24、(1)见解析;(2)见解析【解析】试题分析:(1)根据平行线性质求出∠A=∠B,根据SAS推出即可.
(2)根据全等三角形性质推出CD=CE,根据等腰三角形性质求出即可.试题解析:∵,∴,在和中∴,∵,∴,又∵平分,∴.25、(1)点的坐标为;(2)点的坐标为;(3)点的坐标为;(4)最小值为1.【分析】(1)过C作直线EF∥x轴,分别过点A、B作直线EF的垂线,垂足分别为E、F,证明ΔACE≌ΔCBF,得到CF=AE,BF=CE,即可得到结论;(2)分别过点A、B作x轴的垂线,垂足分别为G、H易证ΔAGD≌ΔBHD,得到GD=HD.由G(-3,0),H(1,0),即可得到结论;(3)作点A(-5,1)关于轴的对称点A'(-5,-1),连接AP,A'P,A'C.过A'作A'R⊥y轴于R,则AP=A'P,根据ΔACP的周长=AC+AP+CP=AC+A'P+CP≥AC+A'C.根据△A'RC和△COP都是等腰直角三角形,得到PO=CO=4,从而得到结论.(4)作点B关于直线AC的对称点B'.过B'作B'R⊥y轴于R,过B作BT⊥y轴于T.可证明△B'RC≌△BTC,根据全等三角形对应边相等可B'的坐标.过点B'作x轴的垂线交直线AC于点M,交x轴于点N,则BM+MN=B'M+MN.根据“垂线段最短”可得它的最小值即线段B'N的长.即可得到结论.【详解】(1)如图,过C作直线EF∥x轴,分别过点A、B作直线EF的垂线,垂足分别为E、F,∴∠E=∠F=10°,∴∠EAC+∠ECA=10°.∵∠ACB=10°,∴∠BCF+∠ECA=10°,∴∠BCF=∠EAC.又∵AC=BC,∴ΔACE≌ΔCBF,∴CF=AE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年停车场车位租赁协议
- 2024年专业人才综合聘用协议
- 2024年全新直播带货战略联盟协议
- 2024年公租房租金减免协议
- 商用汤包课程设计
- 美术机构课程设计动漫
- 机械课程设计纸折叠
- 2024年中国平绣绣品市场调查研究报告
- 美术区域课程设计幼儿园
- 2024至2030年中国非标高强度螺栓数据监测研究报告
- 雪佛兰爱唯欧说明书
- 经营分析报告案例-麦肯锡风格
- 烟花爆竹经营单位主要负责人安全培训
- 2023春国开会计实务专题形考任务1-4题库及答案汇总
- 可疑值的取舍-Q检验法
- 生物信息学(上海海洋大学)知到章节答案智慧树2023年
- 核磁共振T临床应用
- 文件与文件夹测试题(含参考答案)
- 电工安全培训课件
- 维修工程技术标
- 《长津湖》电影赏析PPT
评论
0/150
提交评论