2023届北京市第四中学八年级数学第一学期期末考试试题含解析_第1页
2023届北京市第四中学八年级数学第一学期期末考试试题含解析_第2页
2023届北京市第四中学八年级数学第一学期期末考试试题含解析_第3页
2023届北京市第四中学八年级数学第一学期期末考试试题含解析_第4页
2023届北京市第四中学八年级数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.小明通常上学时走上坡路,通常的速度为m千米时,放学回家时,原路返回,通常的速度为n千米时,则小明上学和放学路上的平均速度为()千米/时A. B. C. D.2.两条直线与在同一直角坐标系中的图象位置可能为().A. B. C. D.3.顺次连接矩形各边中点得到的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形4.问四个车标中,不是轴对称图形的为()A. B. C. D.5.在△ABC中,∠C=∠B,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是()A.∠B B.∠A C.∠C D.∠B或∠C6.同一直角坐标系中,一次函数y=kx+b的图象如图所示,则满足y≥0的x取值范围是()A.x≤-2 B.x≥-2 C.x<-2 D.x>-27.如图,一次函数的图象与轴,轴分别相交于两点,经过两点,已知,则的值分别是()A.,2 B., C.1,2 D.1,8.下列式子中,属于最简二次根式的是()A. B. C. D.9.下列各式中,能用完全平方公式进行因式分解的是.A. B. C. D.10.下列各数中,是无理数的是().A. B. C. D.011.下列长度的三条线段能组成三角形的是()A. B. C. D.12.如图,将矩形纸片ABCD折叠,AE、EF为折痕,点C落在AD边上的G处,并且点B落在EG边的H处,若AB=3,∠BAE=30°,则BC边的长为()A.3 B.4 C.5 D.6二、填空题(每题4分,共24分)13.已知,,则__________.14.在实数范围内,把多项式因式分解的结果是________.15.在平行四边形中,,,,那么的取值范围是______.16.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是.17.下列实数中,0.13,π,﹣,,1.212212221…(两个1之间依次多一个2)中,是无理数的有__个.18.已知等腰三角形一个外角的度数为,则顶角度数为____________.三、解答题(共78分)19.(8分)如图,在四边形ABCD中,∠B=90°,AB∥ED,交BC于E,交AC于F,DE=BC,.(1)求证:△FCD是等腰三角形(2)若AB=3.5cm,求CD的长.20.(8分)已知:是等边三角形,D是直线BC上一动点,连接AD,在线段AD的右侧作射线DP且使∠ADP=30°,作点A关于射线DP的对称点E,连接DE、CE.(1)当点D在线段BC上运动时,如图,请用等式表示线段AB、CE、CD之间的数量关系,并证明;(2)当点D在直线BC上运动时,请直接写出AB、CE、CD之间的数量关系,不需证明.21.(8分)如图,在长方形ABCO中,点O为坐标原点,点B的坐标为(8,6),点A,C在坐标轴上,直线y=2x+b经过点A且交x轴于点F.(1)求b的值和△AFO的面积;(2)将直线y=2x+b向右平移6单位后交AB于点D,交y轴于点E;①求点D,E的坐标;②动点P在BC边上,点Q是坐标平面内第一象限内的点,且在平移后的直线上,若△APQ是等腰直角三角形,求点Q的坐标.22.(10分)如图,在平面直角坐标系xOy中,A(-3,4),B(-4,1),C(-1,1).(1)在图中作出△ABC关于x轴的轴对称图形△A′B′C′;(2)直接写出A,B关于y轴的对称点A″,B″的坐标.23.(10分)如图,L1、L2分别表示两个一次函数的图象,它们相交于点P.(1)求出两条直线的函数关系式;(2)点P的坐标可看作是哪个二元一次方程组的解?(3)求出图中△APB的面积.24.(10分)(1)尺规作图:如图,在上作点,使点到和的距离相等.须保留作图痕迹,且用黑色笔将作图痕迹描黑,不写作法和证明.(2)若,,,求的面积.25.(12分)如图1,直线AB交x轴于点A(4,0),交y轴于点B(0,-4),(1)如图,若C的坐标为(-1,,0),且AH⊥BC于点H,AH交OB于点P,试求点P的坐标;(2)在(1)的条件下,如图2,连接OH,求证:∠OHP=45°;(3)如图3,若点D为AB的中点,点M为y轴正半轴上一动点,连结MD,过点D作DN⊥DM交x轴于N点,当M点在y轴正半轴上运动的过程中,式子的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.26.(1)解方程:;(2)列分式方程解应用题:用电脑程序控制小型赛车进行比赛,“畅想号”和“逐梦号”两赛车进入了最后的决赛.比赛中,两车从起点同时出发,“畅想号”到达终点时,“逐梦号”离终点还差.从赛后数据得知两车的平均速度相差.求“畅想号”的平均速度.

参考答案一、选择题(每题4分,共48分)1、C【分析】平均速度总路程总时间,题中没有单程,可设从家到学校的单程为2,那么总路程为2.【详解】解:依题意得:.故选:C.【点睛】本题考查了列代数式;解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为2.2、B【分析】由于a、b的符号均不确定,故应分四种情况讨论,找出合适的选项.【详解】解:分四种情况讨论:当a>0,b>0时,直线与的图象均经过一、二、三象限,4个选项均不符合;当a>0,b<0,直线图象经过一、三、四象限,的图象经过第一、二、四象限;选项B符合此条件;当a<0,b>0,直线图象经过一、二、四象限,的图象经过第一、三、四象限,4个选项均不符合;当a<0,b<0,直线图象经过二、三、四象限,的图象经过第二、三、四象限,4个选项均不符合;故选:B.【点睛】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.3、C【分析】根据三角形的中位线定理,得新四边形各边都等于原四边形的对角线的一半,进而可得连接对角线相等的四边形各边中点得到的四边形是菱形.【详解】解:如图,矩形中,分别为四边的中点,四边形是平行四边形,四边形是菱形.故选C.【点睛】本题主要考查了矩形的性质、菱形的判定,以及三角形中位线定理,关键是掌握三角形的中位线定理及菱形的判定.4、C【分析】如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,据此解题即可.【详解】A,B,D三个选项中可以找出对称轴,是轴对称图形,C选项不符合.所以答案为C选项.【点睛】本题主要考查了轴对称图形的判断,熟练掌握其特点是解题关键.5、B【分析】根据三角形的内角和等于180°可知,∠C与∠B不可能为100°,根据全等三角形的性质可得∠A为所求角.【详解】解:假设,,与矛盾,假设不成立,则,故答案为B.【点睛】本题考查了全等三角形的基本性质和三角形内角和定理,满足内角和定理的前提下找到对应角是解题关键.6、A【分析】根据图象找到一次函数图象在x轴上方时x的取值范围.【详解】解:表示一次函数在x轴上方时,x的取值范围,根据图象可得:.故选:A.【点睛】本题考查一次函数与不等式的关系,解题的关键是掌握利用函数图象解不等式的方法.7、A【解析】由图形可知:△OAB是等腰直角三角形,,可得A,B两点坐标,利用待定系数法可求k和b的值.【详解】由图形可知:△OAB是等腰直角三角形,OA=OB,

∵,,即,∴OA=OB=2,

∴A点坐标是(2,0),B点坐标是(0,2),

∵一次函数的图象与x轴、y轴分别相交于A、B两点,

∴将A,B两点坐标代入,

得解得:,

故选:A.【点睛】本题主要考查了图形的分析运用和待定系数法求解析式,找出A,B两点的坐标是解题的关键.8、B【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【详解】A.=,不是最简二次根式,故该选项不符合题意,B.是最简二次根式,故该选项符合题意,C.被开方数中含分母,不是最简二次根式,故该选项不符合题意,D.=,被开方数中含分母,不是最简二次根式,故该选项不符合题意,故选:B.【点睛】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:被开方数不含分母;被开方数不含能开得尽方的因数或因式.9、A【分析】根据完全平方式的特征进行因式分解,判断即可.【详解】A.,能用完全平方公式进行因式分解,故选项A正确;B.,不能用完全平方公式进行因式分解,故选项B错误;C.,不能用完全平方公式进行因式分解,故选项C错误;D.,不能用完全平方公式进行因式分解,故选项D错误.故选:A【点睛】本题考查的是多项式的因式分解,掌握用完全平方公式进行因式分解的方法是解题的关键.10、C【分析】根据无理数的定义解答.【详解】=2,是有理数;-1,0是有理数,π是无理数,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.11、C【分析】根据三角形的三边关系:在一个三角形中,两边之和大于第三边,两边之差小于第三边进行判断即可得解.【详解】A.,不满足三边关系,A选项错误;B.,不满足三边关系,B选项错误;C.满足三边关系,C选项正确;D.,不满足三边关系,D选项错误,故选:C.【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形三边关系的知识是解决本题的关键.12、A【解析】利用三角函数求出直角三角形各边长度,再证明△AEC1和△CC1E是等边三角形,即可求出BC长度。【详解】解:连接CC1,如下图所示∵在Rt△ABE中,∠BAE=30,AB=3∴BE=AB×tan30°=1,AE=2,∴∠AEB1=∠AEB=60°由AD∥BC,得∠C1AE=∠AEB=60°∴△AEC1为等边三角形,∴△CC1E也为等边三角形,∴EC=EC1=AE=2∴BC=BE+EC=3所以A选项是正确的【点睛】本题考查直角三角形中的边角关系,属于简单题,关键会用直角三角函数求解直角边长。二、填空题(每题4分,共24分)13、【分析】利用平方差公式对变形为,即可求解.【详解】∵,,∴.故答案为:.【点睛】本题主要考查了平方差公式的应用,解题的关键是牢记公式的结构特征和形式.14、【分析】首先提取公因式3,得到,再对多项式因式利用平方差公式进行分解,即可得到答案.【详解】==故答案是:【点睛】本题考查了对一个多项式在实数范围内进行因式分解.能够把提取公因式后的多项式因式写成平方差公式的形式是解此题的关键.15、2<a<8.【分析】根据平行四边形性质求出OD,OA,再根据三角形三边关系求出a的取值范围.【详解】因为平行四边形中,,,所以,所以6-4<AD<6+2,即2<a<8.故答案为:2<a<8.【点睛】考核知识点:平行四边形性质.理解平行四边形对角线互相平分是关键.16、.【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,∠BDC=∠AOB,BC=AB,∴△ABO≌△BCD(AAS),∴CD=OB,BD=AO,∵点A(1,0),B(0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C在第二象限,∴点C的坐标是(-2,1).17、3【解析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,(每两个1之间依次多一个2)是无理数,其余的都是有理数,即上述各数中,无理数有3个.18、或【分析】等腰三角形的一个外角等于,则等腰三角形的一个内角为72°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.【详解】∵一个外角为,∴三角形的一个内角为72°,当72°为顶角时,其他两角都为、,当72°为底角时,其他两角为72°、36°,所以等腰三角形的顶角为或.故答案为:或【点睛】本题考查了等腰三角形的性质,及三角形内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.三、解答题(共78分)19、(1)详见解析;(2)CD=1cm.【解析】(1)首先根据平行线的性质得出∠DEC=∠B=90°,然后在△DCE中根据三角形内角和定理得出∠DCE的度数,从而得出∠DCF的度数.在△CDF中根据等角对等边证明出△FCD是等腰三角形;(2)先证明△ACB≌△CDE,得出AC=CD,再根据含30°角的直角三角形的性质求解即可.【详解】(1)∵DE∥AB,∠B=90°,∴∠DEC=90°,∴∠DCE=90°﹣∠CDE=60°,∴∠DCF=∠DCE﹣∠ACB=30°,∴∠CDE=∠DCF,∴DF=CF,∴△FCD是等腰三角形;(2)在△ACB和△CDE中,∵,∴△ACB≌△CDE,∴AC=CD.在Rt△ABC中,∠B=90°,∠ACB=30°,AB=3.5,∴AC=2AB=1,∴CD=1.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质和含30°角的直角三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.20、(1)AB=CE+CD,见解析;(2)当点D在线段CB上时,AB=CE+CD;当点D在CB的延长线上时,AB=CD-CE,当点D在BC延长线上时,AB=CE-CD.【分析】(1)由对称可得DP垂直平分AE,则AD=DE,由∠ADP=30°可得△ADE是等边三角形,进而可得△ABC是等边三角形,可得AB=AC=BC,∠BAC=60°,进而可得∠BAD=∠CAE,由SAS可得△BAD≌△CAE,得BD=CE,进而可证得结论;(2)数量关系又三种,可分三种情况讨论:①当点D在线段BC上时,(1)中已证明;②当点D在CB的延长线上时,如图所示,易知△ADE是等边三角形,可得AD=AE,,由△ABC是等边三角形,可得AB=AC=BC,∠BAC=60°,进而可得∠BAD=∠CAE,由SAS可得△BAD≌△CAE,可得BD=CE,进而可得此种情况的结论;③当点D在BC延长线上时,如图所示,易知△ADE是等边三角形,可得AD=AE,,由△ABC是等边三角形,可得AB=AC=BC,∠BAC=60°,进而可得∠BAD=∠CAE,由SAS可得△BAD≌△CAE,可得BD=CE,进而可得此种情况的结论.【详解】解:(1)AB=CE+CD证明:∵点A关于射线DP的对称点为E,∴DP垂直平分AE,∴AD=DE,又∵∠ADP=30°,∴∠ADE=60°,∴△ADE是等边三角形,∴AD=AE,∠DAE=∠ADE=60°,又∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=60°,∴∠BAC-∠DAC=∠DAE-∠DAC,即:∠BAD=∠CAE,在△BAD和△CAE中,∴△BAD≌△CAE,∴BD=CE,∴AB=BC=BD+CD=CE+CD;(2)AB=CE+CD,AB=CE-CD,AB=CD-CE.①当点D在线段BC上时,AB=CE+CD,证明过程为(1);②当点D在CB的延长线上时,如下图所示,AB=CD-CE,证明过程如下:由(1)得,△ADE是等边三角形,∴AD=AE,,又∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=60°,∴∠BAC-∠BAE=∠DAE-∠BAE,即:∠BAD=∠CAE,在△BAD和△CAE中,∴△BAD≌△CAE,∴BD=CE,∴AB=BC=CD-BD=CD-CE;③当点D在BC延长线上时,如图所示,AB=CE-CD,证明过程如下:由(1)得,△ADE是等边三角形,∴AD=AE,,又∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=60°,∴∠BAC+∠DAC=∠DAE+∠DAC,即:∠BAD=∠CAE,在△BAD和△CAE中,∴△BAD≌△CAE,∴BD=CE,∴AB=BC=BD-CD=CE-CD;【点睛】本题主要考查三角形全等的判定和性质,根据题目条件作出正确的图形找出全等的三角形是解题的关键.21、(1)b=6,S△ADO=×3×6=;(2)①D(6,6),E(0,-6);②点Q的坐标可以为(,),(4,2),(,).【分析】(1)由矩形的性质和点B坐标求得A坐标,代入直线方程中即可求得b值,进而求得点F坐标,然后利用三角形面积公式即可解答;(2)①根据图象平移规则:左加右减,上加下减得到平移后的解析式,进而由已知可求得点D、E的坐标;②根据题意,分三种情况:若点A为直角顶点时,点Q在第一象限;若点P为直角顶点时,点Q在第一象限;若点Q为直角顶点,点Q在第一象限,画出对应的图象分别讨论求解即可.【详解】(1)由题意得A(0,6),代入y=2x+b中,解得:b=6,即y=2x+6,令y=0,由0=2x+6得:x=-3,即F(-3,0)∴OA=6,OF=3,∴S△ADO=×3×6=;

(2)①由题意得平移后的解析式为:y=2(x-6)+6=2x-6当y=6时,2x-6=6,解得:x=6∴D(6,6),E(0,-6)②若点A为直角顶点时,点Q在第一象限,连结AC,如图2,∠APB>∠ACB>45°,∴△APQ不可能为等腰直角三角形,∴点Q不存在;若点P为直角顶点时,点Q在第一象限,如图3,过点Q作QH⊥CB,交CB的延长线于点H,则Rt△ABP≌Rt△PHQ,∴AB=PH=8,HQ=BP,设Q(x,2x−6),则HQ=x−8,∴2x−6=8+6−(x−8),∴x=,∴Q(,)若点Q为直角顶点,点Q在第一象限,如图4,设Q′(x,2x−6),∴AG′=Q′H′=6−(2x−6),∴x+6−(2x−6)=8,∴x=4,∴Q′(4,2),设Q′′(x,2x−6),同理可得:x+2x−6−6=8,∴x=,∴Q′′(,),综上所述,点Q的坐标可以为(,),(4,2),(,).【点睛】本题是一道一次函数与几何图形的综合题,涉及图形与坐标、求一次函数的表达式、直线与坐标轴围成的面积、图象平移的坐标变化、等腰直角三角形的判定、解一元一次方程等知识,解答的关键是认真审题,从图象中获取相关信息,利用数形结合法、待定系数法、分类讨论的思想方法确定解题思路,进而推理、探究和计算.22、(1)见解析;(2)A″(3,4),B″(4,1).【分析】(1)正确找出对应点A′,B′,C′即可得出△ABC关于x轴的轴对称图形△A′B′C′;(2)根据关于y轴对称的点,纵坐标不变,横坐标改变符号直接写出即可.【详解】(1)如图所示;(2)点A(﹣3,4)、B(﹣4,1)关于y轴的对称点A″、B″的坐标分别为:A″(3,4),B″(4,1).【点睛】本题考查轴对称图形的作法以及关于坐标轴对称的点的坐标特点,灵活应用关于坐标轴对称的点的性质是解题的关键.23、(1)L1:y=;L2:y=(2)(3)【分析】(1)利用待定系数法即可求出两条直线的函数关系式;(2)根据两直线的交点坐标与两直线解析式联立的二元一次方程组的关系即可得出结论;(3)先求出点P的坐标,然后根据三角形的面积公式即可求出结论.【详解】(1)设直线L1的解析式是y=kx+b,已知L1经过点(0,3),(1,0),可得:,解得,则直线L1的解析式是y=;同理可得L2的解析式是:y=(2)点P的坐标可看作是二元一次方程组的解.(3)解得:∴点P(,);∴S△APB=【点睛】此题考查的是求一次函数解析式、求两直线的交点坐标和求三角形的面积,掌握利用待定系数法求一次函数解析式和两直线的交点坐标与两直线解析式联立的二元一次方程组的关系是解决此题的关键.24、(1)见解析;(2)15【分析】(1)作∠AOB的角平分线交AB于点P,则点P即为所求.(2)由OP为∠AOB的角平分线,且∠AOB=60°,得到∠AOP=30°,再由直角三角形中30°角所对的直角边等于斜边的一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论