2023届北京大附中数学八年级第一学期期末学业水平测试模拟试题含解析_第1页
2023届北京大附中数学八年级第一学期期末学业水平测试模拟试题含解析_第2页
2023届北京大附中数学八年级第一学期期末学业水平测试模拟试题含解析_第3页
2023届北京大附中数学八年级第一学期期末学业水平测试模拟试题含解析_第4页
2023届北京大附中数学八年级第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.若二次根式有意义,且关于的分式方程有正数解,则符合条件的整数的和是()A.-7 B.-6 C.-5 D.-42.如图,在Rt△ACB中,∠C=90°,BE平分∠CBA交AC于点E,过E作ED⊥AB于D点,当∠A为()时,ED恰为AB的中垂线.A.15° B.20° C.30° D.25°3.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值为()A.6 B.18 C.28 D.504.小明用两根同样长的竹棒做对角线,制作四边形的风筝,则该风筝的形状一定是()A.矩形 B.正方形 C.等腰梯形 D.无法确定5.4的算术平方根是A.16 B.2 C.-2 D.6.下列图标是节水、节能、低碳和绿色食品的标志,其中是轴对称图形的是()A. B. C. D.7.《九章算术》是中国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系,在其方程章中有一道题:今有甲乙二人,不知其钱包里有多少钱,若乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲持钱为x,乙持钱为y,则可列方程组A. B. C. D.8.一只船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度.如果设船在静水中的速度为x千米/时,可列出的方程是()A.90x+2=60x-2

B.90x-2=60x+2

9.我们知道方程x2+2x-3=0的解是x1=1,x2=-3,现给出另一个方程(2x+3)2+2(2x+3)-3=0,它的解是().A.x1=1,x2=3 B.x1=1,x2=-3C.x1=-1,x2=3 D.x1=-1,x2=-310.如图,网格中每个小正方形的边长均为1,点A,B,C都在格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为()A.5 B.0.8 C. D.二、填空题(每小题3分,共24分)11.如图,把△ABC绕点C顺时针旋转得到△A'B'C',此时A′B′⊥AC于D,已知∠A=50°,则∠B′CB的度数是_____°.12.计算:__________________.13.我国许多城市的“灰霾”天气严重,影响身体健康.“灰霾”天气的最主要成因是直径小于或等于微米的细颗粒物(即),已知微米米,此数据用科学记数法表示为__________米.14.分式,,的最简公分母是_______.15.若正多边形的每一个内角为,则这个正多边形的边数是__________.16.张小林从镜子里看到镜子对面墙上石英钟指示的时间是2点30分,则实际时间为____.17.如果a+b=5,ab=﹣3,那么a2+b2的值是_____.18.一组数据2、3、-1、0、1的方差是_____.三、解答题(共66分)19.(10分)老陶手机店销售型和型两种型号的手机,销售一台型手机可获利元,销售一台型手机可获利元.手机店计划一次购进两种型号的手机共台,其中型手机的进货量不超过型手机的倍设购进型手机台,这台手机的销售总利润为元.(1)求与的关系式.(2)该手机店购进型、型手机各多少台,才能使销售利润最大.20.(6分)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,其中,,,,、、在同一条直线上,连结.(1)请在图2中找出与全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:.21.(6分)两个工程队共同参与一项筑路工程,若先由甲、乙两队合作天,剩下的工程再由乙队单独做天可以完成,共需施工费万元;若由甲、乙合作完成此项工程共需天,共需施工费万元.(1)求乙队单独完成这项工程需多少天?(2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过万元,则乙队最少施工多少天?22.(8分)计算我区在一项工程招标时,接到甲、乙两个工程队的投标书,从投标书中得知:每施工一天,甲工程队要万元,乙工程队要万元,工程小组根据甲、乙两队标书的测算,有三种方案:甲队单独完成这个工程,刚好如期完成;乙队单独完成这个工程要比规定时间多用5天;**********,剩下的工程由乙队单独做,也正好如期完成.方案中“星号”部分被损毁了.已知,一个同学设规定的工期为天,根据题意列出方程:(1)请将方案中“星号”部分补充出来________________;(2)你认为哪个方案节省工程款,请说明你的理由.23.(8分)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?24.(8分)甲、乙两人分别从距离目的地6千米和10千米的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20分钟到达目的地,求甲、乙的速度.25.(10分)如图,等腰三角形ABC中,AB=AC=4,∠BAC=100°,点D是底边BC的动点(点D不与B、C重合),连接AD,作∠ADE=40°,DE与AC交于点E.(1)当DC等于多少时,△ABD与△DCE全等?请说明理由;(2)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求出∠BDA的度数;若不可以,请说明理由.26.(10分)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据二次根式有意义得出m的范围,根据分式方程有正数解得出x的范围,继而可得整数m的值.【详解】解:解分式方程,,,∵分式方程有正数解,∴∴,∵有意义,∴,∴,∴符合条件的m的值有:-4,-3,-2,-1,0,1,2,和为-7.故选A.【点睛】本题主要考查分式方程的解和二次根式有意义的条件,熟练掌握解分式方程和二次根式的性质,并根据题意得到关于m的范围是解题的关键.2、C【分析】当∠A=30°时,根据直角三角形的两个锐角互余,即可求出∠CBA,然后根据角平分线的定义即可求出∠ABE,再根据等角对等边可得EB=EA,最后根据三线合一即可得出结论.【详解】解:当∠A为30°时,ED恰为AB的中垂线,理由如下∵∠C=90°,∠A=30°∴∠CBA=90°-∠A=60°∵BE平分∠CBA∴∠ABE=∠CBA=30°∴∠ABE=∠A∴EB=EA∵ED⊥AB∴ED恰为AB的中垂线故选C.【点睛】此题考查的是直角三角形的性质和等腰三角形的判定及性质,掌握直角三角形的两个锐角互余、等角对等边和三线合一是解决此题的关键.3、B【分析】先提取公因式ab,再利用完全平方公式因式分解,最后代入已知等式即可得答案.【详解】a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2∵a+b=3,ab=2,∴原式=2×33=18,故选B.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.4、D【解析】分析:对角线相等的四边形有正方形,矩形,等腰梯形,一般的四边形等.解答:解:用两根同样长的竹棒做对角线,制作四边形的风筝,则该风筝的形状可能是正方形,矩形,等腰梯形,一般的四边形等,所以是无法确定.故选D5、B【分析】根据算术平方根的定义直接求解即可.【详解】解:4的算术平方根是,故选B.【点睛】本题考查了算术平方根的定义,正确把握定义是解题关键.6、D【分析】轴对称图形的概念是:某一图形沿一直线折叠后的两部分能够完全重合,这样的图形是轴对称图形,根据这一概念对各选分析判断,利用排除法求解即可.【详解】A.不是轴对称图形,所以本选项错误;B.不是轴对称图形,所以本选项错误;C.不是轴对称图形,所以本选项错误;D.是轴对称图形,所以本选项正确.故选D【点睛】本题考查的知识点是轴对称图形的概念,利用轴对称图形的特点是“对折后两部分能够完全重合”逐条进行对比排除是关键.7、B【分析】由乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的给乙,则乙的钱数也能为50,列出方程组求解即可.【详解】解:由题意得:,故选B.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是理解题意列出方程组.8、A【解析】未知量是速度,有路程,一定是根据时间来列等量关系的.关键描述语是:顺流航行90千米与逆流航行60千米所用的时间相等,等量关系为:顺流航行90千米时间=逆流航行60千米所用的时间.【详解】顺流所用的时间为:90x+2;逆流所用的时间为:60x-2.所列方程为:90x+2【点睛】本题考查由实际问题抽象出分式方程,解题的关键是读懂题意,得到分式方程.9、D【分析】将作为一个整体,根据题意,即可得到的值,再通过求解一元一次方程,即可得到答案.【详解】根据题意,得:或∴或故选:D.【点睛】本题考查了一元一次方程、一元二次方程的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.10、C【分析】连接AD,由勾股定理求出DE,即可得出CD的长.【详解】解:如图,连接AD,则AD=AB=3,

由勾股定理可得,Rt△ADE中,DE=,

又∵CE=3,

∴CD=3-,

故选:C.【点睛】本题考查了勾股定理的运用,由勾股定理求出DE是解决问题的关键.二、填空题(每小题3分,共24分)11、1【分析】由旋转的性质可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA'=1°=∠B′CB.【详解】解:∵把△ABC绕点C顺时针旋转得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案为1.【点睛】本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.12、x1-y1【分析】根据平方差公式(a+b)(a-b)=a1-b1计算,其特点是:一项的符号相同,另一项项的符号相反,可得到答案.【详解】x1-y1.故答案为:x1-y1.【点睛】此题主要考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.13、【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】,故答案为.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14、11xy1.【分析】取各系数的最小公倍数,各字母的最高次幂.1,3,4的最小公倍数为11,x的最高次幂为1,y的最高次幂为1,则得出最简公分母.【详解】解:分母1x,3y1,4xy的最简公分母为11xy1,

故答案为11xy1.【点睛】本题考查了最简公分母,关键是掌握最简公分母的定义,分两个部分确定.15、八(或8)【解析】分析:根据正多边形的每一个内角为,求出正多边形的每一个外角,根据多边形的外角和,即可求出正多边形的边数.详解:根据正多边形的每一个内角为,正多边形的每一个外角为:多边形的边数为:故答案为八.点睛:考查多边形的外角和,掌握多边形的外角和是解题的关键.16、9点1分【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称,分析可得答案.【详解】解:2:1时,分针竖直向下,时针指2,3之间,根据对称性可得:与9:1时的指针指向成轴对称,故实际时间是9:1.故答案为:9点1分【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.17、31【分析】先根据完全平方公式:可得:,再将a+b=5,ab=﹣3代入上式计算即可.【详解】因为,所以,将a+b=5,ab=﹣3代入上式可得:,故答案为:31.【点睛】本题主要考查完全平方公式,解决本题的关键是要熟练应用完全平方公式进行灵活变形.18、2【解析】先利用公式求出这组数据的平均数,再根据方差的计算公式即可得出答案【详解】平均数则方差.故答案为:2.【点睛】本题考查方差的定义以及平均数求法,熟记公式是解题关键,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.三、解答题(共66分)19、(1),(2)台型手机,台型手机.【分析】(1)由总利润等于销售,型手机获得的利润之和,从而可得答案;(2)由型手机的进货量不超过型手机的倍列不等式求解的范围,再利用函数的性质求解最大的销售利润即可得到答案.【详解】解:(1)由题意得:.(2)根据题意得:,解得,,,随的增大而减小,为正整数,当时,取最大值,则,即商店购进台型手机,台型手机才能使销售利润最大.【点睛】本题考查的是一次函数的应用,一元一次不等式的应用,利用函数的性质求最大利润,掌握以上知识是解题的关键.20、(1)与全等的三角形为△ACD,理由见解析;(2)见解析【分析】(1)根据等式的基本性质可得∠BAE=∠CAD,然后利用SAS即可证出≌△ACD;(2)根据全等三角形的性质和已知条件可得∠ABE=∠ACD=45°,从而求出∠DCB=90°,然后根据垂直的定义即可证出结论.【详解】解:(1)与全等的三角形为△ACD,理由如下∵∴∠BAC+∠CAE=∠EAD+∠CAE∴∠BAE=∠CAD在和△ACD中∴≌△ACD(2)∵≌△ACD,∴∠ABE=∠ACD=45°∴∠DCB=∠ACD+∠ACB=90°∴【点睛】此题考查的是全等三角形的判定及性质和垂直的判定,掌握利用SAS判定两个三角形全等、全等三角形的对应角相等和垂直的定义是解决此题的关键.21、(1)乙队单独完成这项工程需90天;(2)甲队每天的施工费为15万元,乙队每天的施工费为8万元;(3)乙队最少施工30天【分析】(1)设乙队单独完成这项工程需x天,根据“甲、乙合作30天的工作量+乙队15天的工作量=1”列分式方程即可;(2)设甲队每天的施工费为a万元,乙队每天的施工费为b万元,根据题意列二元一次方程组即可求出a、b的值;(3)先求出甲的效率,设乙队施工y天,则甲队还需施工天完成任务,然后根据“总费用不超过万元”列出不等式即可得出结论.【详解】解:(1)设乙队单独完成这项工程需x天由题意可得:解得:x=90经检验:x=90是原方程的解答:乙队单独完成这项工程需90天.(2)设甲队每天的施工费为a万元,乙队每天的施工费为b万元由题意可知:解得:答:甲队每天的施工费为15万元,乙队每天的施工费为8万元.(3)甲的效率为设乙队施工y天,则甲队还需施工天完成任务根据题意可得15×+8y≤840解得:y≥30答:乙队最少施工30天.【点睛】此题考查的是分式方程的应用、二元一次方程组的应用和不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.22、(1)甲、乙两队合作4天;(2)方案可以节省工程款.【分析】(1)方程中代表甲乙合作4天所做工程量,据此可得结果;(2)根据题意先求得规定的天数,然后再计算三种方案的价钱后进行对比.【详解】解:(1)方程中代表甲乙合作4天所做工程量,所以“星号”部分应为“甲、乙两队合作4天”;(2)设规定的工期为天,根据题意列出方程:,解得:.经检验:是原分式方程的解.这三种施工方案需要的工程款为:(A)(万元);(B)(万元);(C)(万元).综上所述,方案可以节省工程款.【点睛】本题考查分式方程的应用,根据题意列出分式方程是关键,还需要注意解分式方程需要验根.23、(1)每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买1辆A型车和1辆B型车.【分析】(1)每辆A型车和B型车的售价分别是x万元、y万元.构建方程组即可解决问题;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得18a+26(6﹣a)≥110,求出整数解即可;【详解】(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得,答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得18a+26(6﹣a)≥110,解得a≤1,∴2≤a≤1.a是正整数,∴a=2或a=1.共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买1辆A型车和1辆B型车;【点睛】本题考查一元一次不等式的应用,二元一次方程组的应用等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24、甲的速度为4.5千米/小时,乙的速度为1千米/小时【分析】设甲的速度为3x千米/小时,则乙的速度为4x千米/小时,根据时间=路程÷速度,结合甲比乙提前20分钟到达目的地即可得出关于x的分式方程,解之即可求出x的值,检验后将其代入3x、4x中即可得出结论.【详解】解:设甲的速度为3x千米/小时,则乙的速度为4x千米/小时,根据题意得:﹣=,解得:x=1.5,经检验,x=1.5是原分式方程的解,∴3x=4.5,4x=1.答:甲的速度为4.5千米/小时,乙的速度为1千米/小时.【点睛】本题考查了分式方程的应用,解决本题的关键是找到题目中蕴含的等量关系,在解方程后注意检验。25、(1)当DC=4时,△ABD≌△DCE,理由详见解析;(2)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【分析】(1)当DC=4时,利用∠DEC+∠EDC=140,∠ADB+∠EDC=140,得到∠ADB=∠DEC,根据AB=DC=4,证明△ABD≌△DCE;(2)分DA=DE、AE=AD、EA=ED三种情况,根据等腰三角形的性质、三角形内角和定理计算.【详解】解:(1)当DC=4时,△ABD≌△DCE,理由:∵AB=AC=4,∠BAC=10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论