2022年西藏自治区左贡县中学八年级数学第一学期期末预测试题含解析_第1页
2022年西藏自治区左贡县中学八年级数学第一学期期末预测试题含解析_第2页
2022年西藏自治区左贡县中学八年级数学第一学期期末预测试题含解析_第3页
2022年西藏自治区左贡县中学八年级数学第一学期期末预测试题含解析_第4页
2022年西藏自治区左贡县中学八年级数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列四个标志是关于安全警示的标志,在这些标志中,是轴对称图形的是()A. B.C. D.2.若分式的值为零,则x的值为()A.±3 B.3C.﹣3 D.以上答案均不正确3.若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=34.如图,在△ABC中,∠C=90°,∠BAC=30°,AB=12,AD平分∠BAC,点PQ分别是AB、AD边上的动点,则BQ+QP的最小值是()A.4 B.5 C.6 D.75.太原市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足10000元,则这个小区的住户数()A.至少20户 B.至多20户 C.至少21户 D.至多21户6.在中,,与的外角度数如图所示,则x的值是A.60 B.65 C.70 D.807.如图,在等腰三角形ABC中,BA=BC,∠ABC=120°,D为AC边的中点,若BC=6,则BD的长为()A.3 B.4 C.6 D.88.如图,在等腰Rt△ABC中,∠ACB=90°,,点D为AB的中点,点E在BC上,CE=2,将线段ED绕点E按顺时针方向旋转90°得到EF,连接DF,然后把△DEF沿着DE翻折得到△DEF′,连接AF′,BF′,取AF′的中点G,连接DG,则DG的长为()A. B. C.2 D.9.甲种防腐药水含药30%,乙种防腐药水含药75%,现用这两种防腐药水配制含药50%的防腐药水18千克,两种药水各需要多少千克?设甲种药水需要x千克,乙种药水需要y千克,则所列方程组正确的是()A. B.C. D.10.某小区有一块边长为a的正方形场地,规划修建两条宽为b的绿化带.方案一如图甲所示,绿化带面积为S甲:方案二如图乙所示,绿化带面积为S乙.设,下列选项中正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.一次函数y=2x+b的图象沿y轴平移3个单位后得到一次函数y=2x+1的图象,则b值为_____.12.如图,扶梯AB的坡比为4:3,滑梯CD的坡比为1:2,若米,一男孩经扶梯AB走到滑梯的顶部BC,然后从滑梯CD滑下,共经过了_____米.13.点,是直线上的两点,则_______0(填“>”或“<”).14.若最简二次根式与可以合并,则a=____.15.观察下列各等式:,,,…根据你发现的规律,计算:____.(为正整数)16.在实数范围内分解因式:m4﹣4=______.17.如图,中,,,、分别平分、,过点作直线平行于,交、于、,则的周长为______.18.若分式的值为零,则x的值等于_____.三、解答题(共66分)19.(10分)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.20.(6分)如图,在中,,,为的中点,、分别是、(或它们的延长线)上的动点,且.(1)当时,如图①,线段和线段的关系是:_________________;(2)当与不垂直时,如图②,(1)的结论还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)当、运动到、的延长线时,如图③,请直接写出、、之间的关系.21.(6分)近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某单位计划在室内安装空气净化装置,需购进A、B两种设备.每台B种设备价格比每台A种设备价格多0.7万元,花3万元购买A种设备和花7.2万元购买B种设备的数量相同.(1)求A种、B种设备每台各多少万元?(2)根据单位实际情况,需购进A、B两种设备共20台,总费用不高于15万元,求A种设备至少要购买多少台?22.(8分)如图直线对应的函数表达式为,直线与轴交于点.直线:与轴交于点,且经过点,直线,交于点.(1)求点,点的坐标;(2)求直线对应的函数表达式;(3)求的面积;(4)利用函数图象写出关于,的二元一次方程组的解.23.(8分)如图,直线y=-x+8与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B'处.(1)求A、B两点的坐标;(2)求S△ABO·(3)求点O到直线AB的距离.(4)求直线AM的解析式.24.(8分)为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.求甲、乙两队单独完成这项工程各需多少天?已知甲队每天的施工费用为万元,乙队每天的施工费用为万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?25.(10分)已知点M(2a﹣b,5+a),N(2b﹣1,﹣a+b).若点M,N关于y轴对称,求(4a+b)2019的值.26.(10分)如图,在中,平分,于点,点是的中点.(1)如图1,的延长线与边相交于点,求证:;(2)如图2,中,,求线段的长.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得答案.【详解】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.2、C【分析】根据分式的值为零的条件得到|x|﹣1=2且x2﹣x﹣6≠2,先解|x|﹣1=2得x=1或﹣1,然后把x的值代入x2﹣x﹣6进行计算可确定x的值.【详解】解:根据题意得|x|﹣1=2且x2﹣x﹣6≠2,解|x|﹣1=2得x=1或﹣1,而x=1时,且x2﹣x﹣6=9﹣1﹣6=2,所以x=﹣1.故选:C.【点睛】本题考查了分式的值为零的条件:分式的分子为2,分母不为2,则分式的值为2.易错点是忘记考虑分母不为2的限制.3、C【解析】试题分析:要使有意义,则x-3≠0,即x≠3,故答案选C.考点:分式有意义的条件.4、C【分析】如图,作点P关于直线AD的对称点P′,连接QP′,由△AQP≌△AQP′,得PQ=QP′,欲求PQ+BQ的最小值,只要求出BQ+QP′的最小值,即当BP′⊥AC时,BQ+QP′的值最小,此时Q与D重合,P′与C重合,最小值为BC的长.【详解】解:如图,作点P关于直线AD的对称点P′,连接QP′,△AQP和△AQP′中,,∴△AQP≌△AQP′,∴PQ=QP′∴欲求PQ+BQ的最小值,只要求出BQ+QP′的最小值,∴当BP′⊥AC时,BQ+QP′的值最小,此时Q与D重合,P′与C重合,最小值为BC的长.在Rt△ABC中,∵∠C=90°,AB=12,∠BAC=30°,∴BC=AB=6,∴PQ+BQ的最小值是6,故选:C.【点睛】本题考查了勾股定理、轴对称中的最短路线问题、垂线段最短等知识,找出点P、Q的位置是解题的关键.5、C【分析】根据“x户居民按1000元计算总费用>整体初装费+500x”列不等式求解即可.【详解】解:设这个小区的住户数为户.则,解得是整数,这个小区的住户数至少1户.故选:C,【点睛】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等关系式即可求解.注意本题中的住户数是整数,所以在x>20的情况下,至少取1.6、C【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵与∠ABC相邻的外角=∠A+∠C,∴x+65=x-5+x,解得x=1.故选C.【点睛】本题考查了三角形的外角性质,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.7、A【分析】根据等腰三角形的性质三线合一可得直角三角形,再利用直角三角形的性质即可得到结论.【详解】解:∵BA=BC,∠ABC=120°,∴∠C=∠A=30°,∵D为AC边的中点,∴BD⊥AC,∵BC=6,∴BD=BC=3,故选:A.【点睛】本题考查了直角三角形的性质和等腰三角形的性质,熟练掌握等腰三角形与直角三角形的性质是解题的关键.8、B【分析】如图中,作于点,于.根据已知条件得到,,根据三角形的中位线的选择定理得到,得到,根据全等三角形的选择得到,,求得,得到,根据三角形中位线的性质定理即可得到结论.【详解】解:如图中,作于点,于.,点为的中点,,,,,,,,,,,,,,,,,,,点为的中点,取的中点,,;故选:.【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.9、A【解析】根据等量关系:甲种防腐药水+乙种防腐药水=18千克,甲种防腐药+乙种防腐药=18×50%千克,可得出关于x、y的二元一次方程组,解之即可得出结论.【详解】由题意得:.故选A.【点睛】本题考查由实际问题抽象出二元一次方程组,根据数量关系找出关于x、y的二元一次方程是解题关键.10、D【分析】由题意可求S甲=2ab-b2,S乙=2ab,代入可求k的取值范围.【详解】∵S甲=2ab-b2,S乙=2ab.∴∵a>b>0∴<k<1故选D.【点睛】本题考查了正方形的性质,能用代数式正确表示阴影部分面积是本题的关键.二、填空题(每小题3分,共24分)11、﹣2或2【分析】由于题目没说平移方向,所以要分两种情况求解,然后根据直线的平移规律:上加下减,左加右减解答即可.【详解】解:由题意得:平移后的直线解析式为y=2x+b±3=2x+1.∴b±3=1,解得:b=﹣2或2.故答案为:﹣2或2.【点睛】本题考查了直线的平移,属于基本题型,熟练掌握直线的平移规律是解答的关键.12、【分析】根据两个坡度比求出BE和DF,再利用勾股定理求出AB和CD,最后加上BC就是经过的路程长.【详解】解:∵AB的坡度是4:3,∴,∵,则,∴,∵CD的坡度是1:2,∴,∵,则,∴,根据勾股定理,,,.故答案是:.【点睛】本题考查解直角三角形的实际应用,解题的关键是抓住坡度的比,利用这个关系去解直角三角形.13、>.【分析】根据k<0,一次函数的函数值y随x的增大而减小解答.【详解】解:∵直线的k<0,∴函数值y随x的增大而减小.∵点,是直线上的两点,-1<3,∴y1>y2,即故答案为:>.【点睛】本题考查一次函数图象上点的坐标特征。利用数形结合思想解题是关键.14、1【分析】由于两个最简二次根式可以合并,因此它们是同类二次根式,即被开方数相同.由此可列出一个关于a的方程,解方程即可求出a的值.【详解】解:由题意,得1+2a=5−2a,解得a=1.故答案为1.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.15、【分析】分析题中所给规律即可计算得到结果.【详解】解:∵,,∴,…∴原式=++…+==故答案为:【点睛】找得到规律:若左边分母中的两个因数的差是m,则右边应乘以(m为整数).16、【解析】连续用二次平方差公式分解即可.【详解】m4﹣4=(m2+2)(m2-2)=(m2+2)[m2-()2]=.故答案为:.【点睛】本题考查了二次根式的性质及因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.17、1【分析】根据分别平分,EFBC,得∠EBD=∠EDB,从而得ED=EB,同理:得FD=FC,进而可以得到答案.【详解】∵分别平分,∴∠EBD=∠CBD,∵EFBC,∴∠EDB=∠CBD,∴∠EBD=∠EDB,∴ED=EB,同理:FD=FC,∴的周长=AE+AF+EF=AE+AF+ED+FD=AE+AF+EB+FC=AB+AC=6+7=1.故答案是:1.【点睛】本题主要考查角平分线和平行线的性质定理,掌握“双平等腰”模型,是解题的关键.18、1【解析】根据题意得:x﹣1=0,解得:x=1.此时1x+1=5,符合题意,故答案为1.三、解答题(共66分)19、(1)见解析(1)1+【解析】试题分析:(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=1AF,从而得证.(1)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.解:(1)证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形.∴AD=BD.∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°.∴∠CAD=∠CBE.在△ADC和△BDF中,∠CAD=∠CBF,AD=BD,∠ADC=∠BDF=90°,∴△ADC≌△BDF(ASA).∴BF=AC.∵AB=BC,BE⊥AC,∴AC=1AE.∴BF=1AE.(1)∵△ADC≌△BDF,∴DF=CD=.在Rt△CDF中,.∵BE⊥AC,AE=EC,∴AF=CF=1.∴AD=AF+DF=1+.20、(1),;(2)成立,证明见解析;(3)【解析】(1)连接CO,证明△AOM≌△CON可证得OM=ON,∠CON=∠AOM=45°,再证明∠COM=45°即可证明出结论;(2)连接CO,证明可证得OM=ON,再证明即可得到结论;(3)同(2)得:△OCF≌△OBN,,得出S△OMN=S五边形OBNMC=S△CMN+S△OCB=S△CMN+S△ABC.【详解】(1)∵,,∴∠A=45°,∵,∴∠AOM=45°,连接CO,则有CO⊥AB,如图,∴∠COM=45°,∠BCO=45°,CO=AB∵为的中点,∴∴AO=CO在△AOM和△CON中∴△AOM≌△CON∴OM=ON,∠NOC=∠MOA=45°,∴∠NOC+∠COM=45°+45°=90°,即∴,(2)成立,证明:连接,,是中点,(三线合一)又,(3)连接CO,如图所示:同(2)得:△OCF≌△OBN,∠OCM=∠OBN=135°∴S△OMN=S五边形OBNMC,=S△CMN+S△OCB,=S△CMN+S△ABC,∴.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、图形面积的求法,证明三角形全等是解决问题的关键,学会添加常用辅助线,构造全等三角形解决问题.21、(1)每台A种设备0.3万元,每台B种设备1.3万元;(3)1.【解析】试题分析:(1)设每台A种设备x万元,则每台B种设备(x+0.7)万元,根据数量=总价÷单价结合花3万元购买A种设备和花7.3万元购买B种设备的数量相同,即可得出关于x的分式方程,解之并检验后即可得出结论;(3)设购买A种设备m台,则购买B种设备(30﹣m)台,根据总价=单价×数量结合总费用不高于13万元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其内的最小正整数即可.试题解析:(1)设每台A种设备x万元,则每台B种设备(x+0.7)万元,根据题意得:,解得:x=0.3.经检验,x=0.3是原方程的解,∴x+0.7=1.3.答:每台A种设备0.3万元,每台B种设备1.3万元.(3)设购买A种设备m台,则购买B种设备(30﹣m)台,根据题意得:0.3m+1.3(30﹣m)≤13,解得:m≥.∵m为整数,∴m≥1.答:A种设备至少要购买1台.22、(1)点D的坐标为(1,0),点C的坐标为(2,2);(2);(3)3;(4)【分析】(1)将y=0代入直线对应的函数表达式中即可求出点D的坐标,将点代入直线对应的函数表达式中即可求出点C的坐标;(2)根据图象可知点B的坐标,然后将点B和点C的坐标代入中,即可求出直线对应的函数表达式;(3)过点C作CE⊥x轴,先求出点A的坐标,然后根据三角形的面积公式求面积即可;(4)根据二元一次方程组的解和两个一次函数交点坐标关系即可得出结论.【详解】解:(1)将y=0代入中,解得x=1∴点D的坐标为(1,0)将点代入中,得解得:∴点C的坐标为(2,2);(2)由图象可知:点B的坐标为(3,1)将点B和点C的坐标代入中,得解得:∴直线对应的函数表达式为;(3)过点C作CE⊥x轴于E,将y=0代入中,解得x=4∴点A的坐标为(4,0)∵点D(1,0),点C(2,2)∴AD=4-1=3,CE=2∴S△ADC=;(4)∵直线,交于点∴关于,的二元一次方程组的解为.【点睛】此题考查的是一次函数的综合题,掌握用待定系数法求一次函数的解析式、求一次函数与坐标轴的交点坐标、求两个一次函数与坐标轴围成三角形的面积和二元一次方程组的解和两个一次函数交点坐标关系是解决此题的关键.23、(1)A(6,0),B(0,8);(2)24;(1)4.8;(4)y=-x+1.【分析】(1)由解析式令x=0,y=x+8=8,即B(0,8),令y=0时,x=6,即A(6,0);(2)根据三角形面积公式即可求得;(1)根据三角形面积求得即可;(4)由折叠的性质,可求得AB′与OB′的长,BM=B′M,然后设MO=x,由在Rt△OMB′中,OM2+OB′2=B′M2,求出M的坐标,设直线AM的解析式为y=kx+b,再把A、M坐标代入就能求出解析式.【详解】解:(1)当x=0时,y=x+8=8,即B(0,8),当y=0时,x=6,即A(6,0);(2)∵点A的坐标为:(6,0),点B坐标为:(0,8),∠AOB=90°,∴OA=6,OB=8,∴,∴S△ABO=OA•OB=×6×8=24;(1)设点O到直线AB的距离为h,∵S△ABO=OA•OB=AB•h,∴×6×8=×10h,解得h=4.8,∴点O到直线AB的距离为4.8;(4)由折叠的性质,得:AB=AB′=10,∴OB′=AB′-OA=10-6=4,设MO=x,则MB=MB′=8-x,在Rt△OMB′中,OM2+OB′2=B′M2,即x2+42=(8-x)2,解得:x=1,∴M(0,1),设直线AM的解析式为y=kx+b,把(0,1);(6,0)代入可得,,解得,,所以,直线AM的解析式为y=-x+1.【点睛】此题考查了折叠的性质、待定系数法求一次函数的解析式、一次函数图象上点的坐标特征、勾股定理等知识,解答本题的关键是求出OM的长度.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论