工科数学分析 课件 10-1 数项级数的基本概念和性质_第1页
工科数学分析 课件 10-1 数项级数的基本概念和性质_第2页
工科数学分析 课件 10-1 数项级数的基本概念和性质_第3页
工科数学分析 课件 10-1 数项级数的基本概念和性质_第4页
工科数学分析 课件 10-1 数项级数的基本概念和性质_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十章级数

第一节数项级数的基本

概念和性质工科数学分析北京理工大学第二学期数项级数的基本概念和性质问题的提出级数的概念基本性质收敛的必要条件小结一、问题的提出1.计算圆的面积正六边形的面积正十二边形的面积正形的面积二、级数的概念1.级数的定义:(常数项)无穷级数一般项部分和数列级数的部分和2.级数的收敛与发散:余项无穷级数收敛性举例:分形几何中的柯赫(Koch)雪花做法:先给定一个正三角形,然后在每条边上对称的产生边长为原边长的1/3的小正三角形.如此类推在每条凸边上都做类似的操作,我们就得到了面积有限而周长无限的图形——“Koch雪花”.观察雪花分形过程第一次分叉:依次类推播放观察雪花分形过程第一次分叉:依次类推观察雪花分形过程第一次分叉:依次类推观察雪花分形过程第一次分叉:依次类推观察雪花分形过程第一次分叉:依次类推观察雪花分形过程第一次分叉:依次类推观察雪花分形过程第一次分叉:依次类推周长为面积为第次分叉:于是有结论:雪花的周长是无界的,而面积有界.雪花的面积存在极限(收敛).解

收敛

发散

发散考察奇偶数列的敛散性知

发散

综上解已知级数为等比级数,解解等比级数三、基本性质结论:级数的每一项同乘一个不为零的常数,敛散性不变.结论:收敛级数可以逐项相加与逐项相减.解证明

类似地可以证明在级数前面加上有限项不影响级数的敛散性.将级数前面的有限项去掉不影响级数的敛散性.证明此性质表明收敛的级数满足加法结合律.注意收敛级数去括弧后所成的级数不一定收敛.

收敛

发散四、收敛的必要条件证明级数收敛的必要条件:注意1.如果级数的一般项不趋于零,则级数发散;

发散2.必要条件不充分.讨论1首先,其次,8项4项2项2项

项由性质4推论,调和级数发散.讨论2五、小结常数项级数的基本概念基本审敛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论