版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知三角形三边长分别为2,x,5,若x为整数,则这样的三角形个数为()A.2 B.3 C.4 D.52.下列各式属于最简二次根式的是()A. B. C. D.3.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长:学*科*网]4.如图,在中,,的垂直平分线交于点,交于点,连接,若,则的度数为()A.25° B.30° C.35° D.50°5.下列命题中是假命题的是(▲)A.对顶角相等 B.两直线平行,同旁内角互补C.同位角相等 D.平行于同一条直线的两条直线平行6.甲乙两地铁路线长约500千米,后来高铁提速,平均速度是原来火车速度的1.8倍,这样由甲到乙的行驶时间缩短了1.5小时;设原来火车的平均速度为千米/时,根据题意,可得方程()A. B.C. D.7.计算的平方根为()A. B. C.4 D.8.的立方根为()A. B. C. D.9.函数y=中自变量x的取值范围是()A.x>2 B.x≤2 C.x≥2 D.x≠210.如图,在数轴上,点A表示的数是,点B,C表示的数是两个连续的整数,则这两个整数为()A.-5和-4 B.-4和-3 C.3和4 D.4和511.如图,在△ABC中,AB=AC,点D是BC边上的中点,则下列结论中错误的是()A.∠BAD=∠CAD B.∠BAC=∠B C.∠B=∠C D.AD⊥BC12.已知一次函数y=kx+b的图象经过一、二、三象限,则b的值可以是()A.-1 B.-2 C.0 D.2二、填空题(每题4分,共24分)13.如图,在正方形网格中有两个小正方形被涂黑,再涂黑一个图中其余的小正方形,使得整个被涂黑的图案构成一个轴对称图形,那么涂法共有_____种.14.若和是一个正数的两个平方根,则这个正数是__________.15.为中边上的中线,若,,则的取值范围是______.16.已知均为实数,若,则__________.17.已知,且,则______.18.如果方程无解,则m=___________.三、解答题(共78分)19.(8分)鼎丰超市以固定进价一次性购进保温杯若干个,11月份按一定售价销售,销售额为1800元,为扩大销量,减少库存,12月份在11月份售价基础上打9折销售,结果销售量增加50个,销售额增加630元.(1)求鼎丰超市11月份这种保温杯的售价是多少元?(2)如果鼎丰超市11月份销售这种保温杯的利润为600元,那么该鼎丰超市12月份销售这种保温杯的利润是多少元?20.(8分)分解因式:(1)(2)(3)21.(8分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,与直线相交于点,(1)求直线的函数表达式;(2)求的面积;(3)在轴上是否存在一点,使是等腰三角形.若不存在,请说明理由;若存在,请直接写出点的坐标22.(10分)如图所示的方格纸中,每个小方格的边长都是1,点A(﹣4,1)B(﹣3,3)C(﹣1,2)(1)作△ABC关于y轴对称的△A′B′C′;(2)在x轴上找出点P,使PA+PC最小,并直接写出P点的坐标.23.(10分)如图1,在中,,点为边上一点,连接BD,点为上一点,连接,,过点作,垂足为,交于点.(1)求证:;(2)如图2,若,点为的中点,求证:;(3)在(2)的条件下,如图3,若,求线段的长.24.(10分)阅读材料:若m2﹣2mn+2n2﹣11n+22=1,求m,n的值.解:∵m2﹣2mn+2n2﹣11n+22=1,∴(m2﹣2mn+n2)+(n2﹣11n+22)=1.∴(m﹣n)2+(n﹣2)2=1,∴m﹣n=1,n﹣2=1.∴n=2,m=2.根据你的观察,探究下面的问题:(1)已知:x2+2xy+2y2+4y+4=1,求xy的值;(2)已知:△ABC的三边长a,b,c都是正整数,且满足:a2+b2﹣16a﹣12b+111=1,求△ABC的周长的最大值;(3)已知:△ABC的三边长是a,b,c,且满足:a2+2b2+c2﹣2b(a+c)=1,试判断△ABC是什么形状的三角形并说明理由.25.(12分)在正方形网格中,每个小方格都是边长为1的正方形,建立如图所示的平面直角坐标系,的三个顶点都落在小正方形方格的顶点上(1)点A的坐标是,点B的坐标是,点C的坐标是;(2)在图中画出关于y轴对称的;(3)直接写出的面积.26.如图,点A、C、D、B在同一条直线上,且(1)求证:(2)若,求的度数.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边,据此解答即可.【详解】解:由题意可得,5−2<x<5+2,解得1<x<7,∵x为整数,∴x为4、5、6,∴这样的三角形个数为1.故选:B.【点睛】本题考查了三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边;运用三角形的三边关系定理是解答的关键.2、B【分析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,由此结合选项可得出答案.【详解】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.3、D【解析】试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选D.考点:生活中的平移现象4、A【分析】根据等腰三角形的性质和线段垂直平分线的性质可得∠B=∠C=∠BAF,设∠B=x,则△ABC的三个内角都可用含x的代数式表示,然后根据三角形的内角和定理可得关于x的方程,解方程即得答案.【详解】解:∵,∴∠B=∠C,∵EF垂直平分AB,∴FA=FB,∴∠B=∠BAF,设∠B=x,则∠BAF=∠C=x,,根据三角形的内角和定理,得:,解得:,即.故选:A.【点睛】本题考查了等腰三角形的性质、线段垂直平分线的性质和三角形的内角和定理,属于常见题型,熟练掌握上述基本知识是解题的关键.5、C【分析】根据对顶角的性质、平行线的性质、平行公理的推论逐项判断即可.【详解】A、对顶角相等,则此项是真命题B、两直线平行,同旁内角互补,则此项是真命题C、同位角不一定相等,则此项是假命题D、平行于同一条直线的两条直线平行,则此项是真命题故选:C.【点睛】本题考查了对顶角的性质、平行线的性质、平行公理的推论,掌握相交线与平行线的相关知识是解题关键.6、C【分析】设原来高铁的平均速度为x千米/时,则提速后的平均速度为1.8x,根据题意可得:由甲到乙的行驶时间比原来缩短了1.5小时,列方程即可.【详解】解:设原来火车的平均速度为x千米/时,则提速后的平均速度为1.8x,由题意得,.故选C.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7、B【解析】先根据算术平方根的定义求出的值,然后再根据平方根的定义即可求出结果.【详解】∵=4,又∵(±2)2=4,∴4的平方根是±2,即的平方根±2,故选B.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8、A【分析】根据立方根的定义与性质即可得出结果【详解】解:∵∴的立方根是故选A【点睛】本题考查了立方根,关键是熟练掌握立方根的定义,要注意负数的立方根是负数.9、B【详解】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和的条件,要使在实数范围内有意义,必须.故选B.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.10、B【分析】先估算的大小,再求出﹣的大小即可判断.【详解】∵9<13<16,∴3<<4,∴﹣4<﹣<﹣3,故选:B.【点睛】本题考查了实数与数轴,解题关键是会估算二次根式的大小.11、B【分析】由在△ABC中,AB=AC,点D为BC的中点,根据等边对等角与三线合一的性质,即可求得答案.【详解】∵AB=AC,点D为BC的中点,
∴∠BAD=∠CAD,AD⊥BC,∠B=∠C.
故A、C、D正确,B错误.
故选:B.【点睛】本题考查了等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.12、D【分析】根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.【详解】∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选D.【点睛】此题考查一次函数图象与系数的关系,解题关键在于掌握其性质.二、填空题(每题4分,共24分)13、1【分析】直接利用轴对称图形的性质得出符合题意的答案.【详解】解:如图所示:所标数字处都可以使得整个被涂黑的图案构成一个轴对称图形,共1种涂法.故答案为:1.【点睛】本题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.14、1【分析】先根据一个正数有两个平方根且互为相反数,得出两个平方根之和为0,进而列方程求出的值,再将的值代入或并将结果平方即得.【详解】∵和是一个正数的两个平方根∴解得:当时∴∴∴这个正数是1.故答案为:1.【点睛】本题考查了平方根的性质,解题关键在于合理运用一个正数有两个平方根且互为相反数列出方程求解参数,求这个正数而非平方根这是易错点.15、【分析】延长AD到E,使DE=AD,然后利用“边角边”证明△ABD和△ECD全等,根据全等三角形对应边相等可得CE=AB,然后根据三角形任意两边之和大于第三边,两边之差小于第三边求出AE的取值范围,然后即可得解.【详解】解:如图,延长AD到E,使DE=AD,∵AD是BC边上的中线,∴BD=CD,在△ACD和△EBD中,,∴△ACD≌△EBD(SAS),∴AC=BE,∵AB=6,AC=3,∴6-3<AE<6+3,即3<AE<9,∴1.1<AD<4.1.故答案为:1.1<AD<4.1.【点睛】本题考查了三角形的三边关系,全等三角形的判定与性质,遇中点加倍延,作辅助线构造出全等三角形是解题的关键.16、1【分析】首先利用二次根式和平方的非负性建立方程求出,然后对所求代数式利用完全平方公式进行变形为,再整体代入即可.【详解】∵∴原式=故答案为:1.【点睛】本题主要考查二次根式与平方的非负性,整体代入法,完全平方公式,掌握二次根式与平方的非负性,整体代入法是解题的关键.17、.【分析】利用题目给的求出,再把它们相乘得到,再对原式进行变形凑出的形式进行计算.【详解】∵,∴,∴,∴,∵,∴,∴,∴原式.故答案是:.【点睛】本题考查二次根式的运算和乘法公式的应用,解题的关键是熟练运用乘法公式对式子进行巧妙运算.18、1【分析】先去分母把分式方程转化为整式方程,再根据原方程无解可得x=2,然后把x=2代入整式方程求解即可.【详解】解:去分母,得x-3=﹣m,∵原方程无解,∴x-2=0,即x=2,把x=2代入上式,得2-3=﹣m,所以m=1.故答案为1.【点睛】本题考查了分式方程的无解问题,属于常考题型,正确理解题意、掌握解答的方法是关键.三、解答题(共78分)19、(1)18;(2)630【分析】(1)由题意设11月份这种保温杯的售价是x元,依题意列出方程并解出方程即可;(2)根据题意设这种保温杯的售价为y元,并列方程求解进而求出鼎丰超市12月份销售这种保温杯的利润.【详解】解:(1)设11月份这种保温杯的售价是x元,依题意可列方程解得:x=18经检验,x=18是原方程的解,且符合题意答:一鼎丰超市11月份这种保温杯的售价是18元.(2)设这种保温杯的售价为y元,依题意可列方程解得:y=12(18×0.9﹣12)×(100+50)=630(元)答:12月份销售这种保温杯的利润是630元.【点睛】本题考查分式方程的应用以及一元一次方程的应用,解题的关键是找准等量关系,正确列出分式方程和正确列出一元一次方程求解.20、(1);(2);(3)【分析】(1)先提取公因式-2,再利用完全平方公式分解即可得答案;(2)先提取公因式(x-1),再利用平方差公式分解即可得答案;(3)先利用平方差公式分解,再利用完全平方公式分解即可得答案.【详解】(1)原式=(2)原式=(3)原式=【点睛】本题考查利用提取公因式及公式法因式分解,分解因式一般步骤:一提(提公因式),二套(套用平方差公式或完全平方公式),三分(分组分解法或十字相乘法),四查(检查分解是否彻底).熟练掌握完全平方公式及平方差公式是解题关键.21、(1);(2)12;(3)存在,【分析】(1)将点A、B的坐标代入解析式,即可得到答案;(2)先求出交点C的坐标,利用底乘高列式计算即可得到答案;(3)先求出OC的长,分三种情况求出点P的坐标使是等腰三角形.【详解】(1)由题意得,解得,直线的函数表达式;(2)解方程组,得,∴点的坐标,∴;(3)存在,,当OP=OC时,点P(10,0),(-10,0),当OC=PC时,点P(12,0),当OP=PC时,点P(),综上,点P的坐标是(10,0)或(-10,0)或(12,0)或()时,是等腰三角形.【点睛】此题考查待定系数法求函数解析式,求图象交点坐标,利用等腰三角形的定义求点坐标.22、(1)见解析;(2)见解析【解析】(1)分别作出点A、B、C关于y轴的对称点,再首尾顺次连接可得;(2)作点A关于x轴的对称点A″,再连接A″C交x轴于点P.【详解】(1)如图所示,△A′B′C′即为所求;(2)作点A关于x轴的对称点A″,再连接A″C交x轴于点P,其坐标为(﹣3,0).【点睛】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质及最短路线问题.23、(1)详见解析;(2)详见解析;(3)6【分析】(1)根据直角三角形的性质可得,,然后根据三角形的内角和和已知条件即可推出结论;(2)根据直角三角形的性质和已知条件可得,进而可得,,然后即可根据AAS证明≌,可得,进一步即可证得结论;(3)连接,过点作交延长线于点,连接,如图1.先根据已知条件、三角形的内角和定理和三角形的外角性质推出,进而可得,然后即可根据SAS证明△ABE≌△ACH,进一步即可推出,过点作于K,易证△AKD≌△CHD,可得,然后即可根据等腰三角形的性质推得DF=2EF,问题即得解决.【详解】(1)证明:如图1,,,,,,,,;(2)证明:如图2,,,,,,,∵点为的中点,∴AD=CD,,≌(AAS),,,;(3)解:连接,过点作交延长线于点,连接,如图1.,,设,则,,,,,,,∴△ABE≌△ACH(SAS),,,过点作于K,,,,∴△AKD≌△CHD(AAS),,∵,,,.【点睛】本题考查了直角三角形的性质、三角形的内角和定理、三角形的外角性质、等腰直角三角形的判定和性质、全等三角形的判定和性质以及等腰三角形的性质等知识,考查的知识点多、综合性强、难度较大,正确添加辅助线、构造等腰直角三角形和全等三角形的模型、灵活应用上述知识是解题的关键.24、(1);(2)△ABC周长的最大值为4;(3)△ABC是等边三角形.【分析】(1)利用完全平方公式以及非负数的性质求解即可.(2)利用完全平方公式以及非负数的性质求解即可.(3)利用完全平方公式以及非负数的性质求解即可.【详解】解:(1)∵x2+2xy+2y2+4y+4=1,∴(x2+2xy+y2)+(y2+4y+4)=1∴(x+y)2+(y+2)2=1,∴x+y=1,y+2=1,∴x=2,y=﹣2,∴.(2)∵a2+b2﹣16a﹣12b+111=1∴(a2﹣16a+64)+(b2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于变电站一次设备的状态检修研究探析
- 广东省江门市新会区崖南镇田边小学2024-2025学年一年级上学期11月期中语文试题
- 吉林省吉林市普通高中2024-2025学年高二上学期期中考试语文试题(含答案)
- 黑龙江公务员面试模拟18
- 福建公务员面试模拟24
- 河北行政职业能力模拟32
- 河北行政职业能力模拟4
- 吉林行政职业能力模拟10
- 2013年7月20日上午云南省省级直属单位无领导小组讨论面试真题
- 上海市信息管理模拟12
- 术中输血护理操作ppt课件
- 工厂设备管理程序
- 一年级《10以内的加法口算题(共100道)》专项练习题
- 五年级上册劳技教案
- 鲁教版六年级数学上册最新期中试题及答案
- 烟草专卖稽查队长述职报告202X年烟草稽查大队长述职报告.doc
- 中医院重点专科建设整改措施
- 废旧物资竞价出售文件(完整版)
- 旋挖技术交底(共2页)
- 医院新员工试用期考核表(共3页)
- 食品安全抽样检验培训讲义(共69页).ppt
评论
0/150
提交评论