沪教版九年级数学考试满分全攻略第26章二次函数【单元提升卷】(原卷版+解析)_第1页
沪教版九年级数学考试满分全攻略第26章二次函数【单元提升卷】(原卷版+解析)_第2页
沪教版九年级数学考试满分全攻略第26章二次函数【单元提升卷】(原卷版+解析)_第3页
沪教版九年级数学考试满分全攻略第26章二次函数【单元提升卷】(原卷版+解析)_第4页
沪教版九年级数学考试满分全攻略第26章二次函数【单元提升卷】(原卷版+解析)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第26章二次函数【单元提升卷】(满分150分,完卷时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出解题的主要步骤.一.选择题(共6小题)1.抛物线y=﹣x2+2x﹣4一定经过点()A.(2,﹣4) B.(1,2) C.(﹣4,0) D.(3,2)2.在同一坐标系中,作y=x2,y=﹣x2,y=x2的图象,它们的共同特点是()A.抛物线的开口方向向上 B.都是关于x轴对称的抛物线,且y随x的增大而增大 C.都是关于y轴对称的抛物线,且y随x的增大而减小 D.都是关于y轴对称的抛物线,有公共的顶点3.下列二次函数中,如果图象能与y轴交于点A(0,1),那么这个函数是()A.y=3x2 B.y=3x2+1 C.y=3(x+1)2 D.y=3x2﹣x4.已知抛物线y=ax2+bx+c(a≠0)如图所示,那么a、b、c的取值范围是()A.a<0、b>0、c>0 B.a<0、b<0、c>0 C.a<0、b>0、c<0 D.a<0、b<0、c<05.将二次函数y=2(x﹣2)2的图象向左平移1个单位,再向下平移3个单位后所得图象的函数解析式为()A.y=2(x﹣2)2﹣4 B.y=2(x﹣1)2+3 C.y=2(x﹣1)2﹣3 D.y=2x2﹣36.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc<0;②2a﹣b=0;③4ac﹣b2<8a;④3a+c<0;⑤a﹣b<m(am+b)其中正确的结论的个数是()A.1 B.2 C.3 D.4二.填空题(共12小题)7.如果抛物线y=ax2+2经过点(1,0),那么a的值为.8.如果函数是关于x的二次函数,那么k的值是.9.如果抛物线y=﹣2x2+bx+c的对称轴在y轴的左侧,那么b0(填入“<”或“>”).10.将抛物线y=2x2+4绕原点O旋转180°,则旋转后的抛物线的解析式为.11.若抛物线y=ax2+bx+c的系数a,b,c满足a﹣b+c=0,则这条抛物线必经过点.12.如果抛物线y=(k﹣1)x2+9在y轴左侧的部分是上升的,那么k的取值范围是.13.将抛物线y=2(x+2)2+2经过适当的几何变换得到抛物线y=2x2﹣2,请写出一种满足条件的变换方法.14.如图,在平面直角坐标系中,抛物线y=x2﹣mx+4与y轴交于点C,过点C作x轴的平行线交抛物线于点B,点A在抛物线上,点B关于点A的对称点D恰好落在x轴负半轴上,过点A作x轴的平行线交抛物线于点E.若点A、D的横坐标分别为1、﹣1,则线段AE与线段CB的长度和为.15.如图,在平面直角坐标系中,抛物线y=a(x+1)2+b与y=a(x﹣2)2+b+1交于点A.过点A作y轴的垂线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则线段BC的长为.16.已知二次函数y1=x2+2x﹣3的图象如图所示.将此函数图象向右平移2个单位得抛物线y2的图象,则阴影部分的面积为.17.如图,在平面直角坐标系中,点O是边长为2的正方形ABCD的中心.函数y=(x﹣h)2的图象与正方形ABCD有公共点,则h的取值范围是.18.如图,正方形OABC和矩形CDEF在平面直角坐标系中,CD=2DE,点O、C、F在y轴上,点A在x轴上,O为坐标原点,点M为线段OC的中点,若抛物线y=ax2+b经过M、B、E三点,则的值等于.三.解答题(共7小题)19.已知二次函数y=x2﹣4x+3.(1)在网格中,画出该函数的图象.(2)(1)中图象与x轴的交点记为A,B,若该图象上存在一点C,且△ABC的面积为3,求点C的坐标.20.将抛物线y=先向上平移2个单位,再向左平移m(m>0)个单位,所得新抛物线经过点(﹣1,4),求新抛物线的表达式及新抛物线与y轴交点的坐标.21.抛物线y=x2﹣2x+c经过点(2,1).(1)求抛物线的顶点坐标;(2)将抛物线y=x2﹣2x+c沿y轴向下平移后,所得新抛物线与x轴交于A、B两点,如果AB=2,求新抛物线的表达式.22.抛物线y=ax2+bx+c(a≠0)向右平移2个单位得到抛物线y=a(x﹣3)2﹣1,且平移后的抛物线经过点A(2,1).(1)求平移后抛物线的解析式;(2)设原抛物线与y轴的交点为B,顶点为P,平移后抛物线的对称轴与x轴交于点M,求△BPM的面积.23.我们定义两个不相交的函数图象在竖直方向上的最短距离为这两个函数的“和谐值”.(1)求抛物线y=x2﹣2x+2与x轴的“和谐值”;(2)求抛物线y=x2﹣2x+2与直线y=x﹣1的“和谐值”.(3)求抛物线y=x2﹣2x+2在抛物线y=x2+c的上方,且两条抛物线的“和谐值”为2,求c的值.24.在平面直角坐标系xOy中,抛物线C:y=x2+(3﹣m)x经过点A(﹣1,0).(1)求抛物线C的表达式;(2)将抛物线C沿直线y=1翻折,得到的新抛物线记为C1,求抛物线C1的顶点坐标;(3)将抛物线C沿直线y=n翻折,得到的图象记为C2,设C与C2围成的封闭图形为M,在图形M上内接一个面积为4的正方形(四个顶点均在M上),且这个正方形的边分别与坐标轴平行.求n的值.25.小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求y=﹣x2+3x﹣2函数的“旋转函数”.小明是这样思考的:由y=﹣x2+3x﹣2函数可知a1=﹣1,b1=3,c1=﹣2,根据a1+a2=0,b1=b2,c1+c2=0求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面的问题:(1)写出函数y=﹣x2+3x﹣2的“旋转函数”;(2)若函数y1=x2﹣x+n与y2=﹣x2+mx﹣3互为“旋转函数”,求(m+n)2016的值;(3)已知函数y=(x﹣1)(x+4)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试证明经过点A1、B1、C1的二次函数与函数y=(x﹣1)(x+4)互为“旋转函数”.第26章二次函数【单元提升卷】(满分150分,完卷时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出解题的主要步骤.一.选择题(共6小题)1.抛物线y=﹣x2+2x﹣4一定经过点()A.(2,﹣4) B.(1,2) C.(﹣4,0) D.(3,2)【分析】分别将各点代入解析式,使解析式成立者即为正确答案.【解答】解:A、将(2,﹣4)代入y=﹣x2+2x﹣4得,﹣4=﹣4+4﹣4,等式成立,故本选项正确;B、将(1,2)代入y=﹣x2+2x﹣4得,2≠﹣1+2﹣4,等式不成立,故本选项错误;C、将(﹣4,0)代入y=﹣x2+2x﹣4得,0≠﹣16﹣8﹣4,等式不成立,故本选项错误;D、将(3,2)代入y=﹣x2+2x﹣4得,2≠﹣9+6﹣4,等式不成立,故本选项错误.故选:A.【点评】本题考查了二次函数图象上点的坐标特征,要知道函数图象上的点的坐标符合函数的解析式.2.在同一坐标系中,作y=x2,y=﹣x2,y=x2的图象,它们的共同特点是()A.抛物线的开口方向向上 B.都是关于x轴对称的抛物线,且y随x的增大而增大 C.都是关于y轴对称的抛物线,且y随x的增大而减小 D.都是关于y轴对称的抛物线,有公共的顶点【分析】本题的三个抛物线解析式都符合y=ax2形式,可以从顶点坐标和对称轴找相同点.【解答】解:因为y=ax2形式的二次函数对称轴都是y轴,且顶点都在原点,所以它们的共同特点是:关于y轴对称的抛物线,有公共的顶点.故选:D.【点评】要掌握y=ax2形式的二次函数对称轴都是y轴,且顶点都在原点.3.下列二次函数中,如果图象能与y轴交于点A(0,1),那么这个函数是()A.y=3x2 B.y=3x2+1 C.y=3(x+1)2 D.y=3x2﹣x【分析】根据y轴上点的坐标特征,分别计算出x=0时四个函数对应的函数值,然后根据函数值是否为1来判断图象能否与y轴交于点A(0,1).【解答】解:当x=0时,y=3x2=0;当x=0时,y=3x2+1=1;当x=0时,y=3(x+1)2=3;当x=0时,y=3x2﹣x=0,所以抛物线y=3x2+1与y轴交于点(0,1).故选:B.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.4.已知抛物线y=ax2+bx+c(a≠0)如图所示,那么a、b、c的取值范围是()A.a<0、b>0、c>0 B.a<0、b<0、c>0 C.a<0、b>0、c<0 D.a<0、b<0、c<0【分析】根据二次函数的图象与性质即可求出答案.【解答】解:由图象开口可知:a<0,由图象与y轴交点可知:c<0,由对称轴可知:<0,∴a<0,b<0,c<0,故选:D.【点评】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.5.将二次函数y=2(x﹣2)2的图象向左平移1个单位,再向下平移3个单位后所得图象的函数解析式为()A.y=2(x﹣2)2﹣4 B.y=2(x﹣1)2+3 C.y=2(x﹣1)2﹣3 D.y=2x2﹣3【分析】根据二次函数图象的平移规律“上加下减,左加右减”.【解答】解:由“上加下减,左加右减”的原则可知,将二次函数y=2(x﹣2)2的图象向左平移1个单位,再向下平移3个单位后,得以新的抛物线的表达式是,y=2(x﹣2+1)2﹣3,即y=2(x﹣1)2﹣3,故选:C.【点评】本题主要考查的是函数图象的平移,由y=ax2平移得到y=a(x﹣h)2+k,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式即可.6.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc<0;②2a﹣b=0;③4ac﹣b2<8a;④3a+c<0;⑤a﹣b<m(am+b)其中正确的结论的个数是()A.1 B.2 C.3 D.4【分析】①根据抛物线的开口方向、对称轴、与y轴的交点即可得结论;②根据抛物线的对称轴即可得结论;③根据抛物线与x轴的交点个数即可得结论;④根据抛物线的对称轴和x等于1时y小于0即可得结论;⑤根据抛物线的顶点坐标及其它任何坐标的纵坐标进行比较即可得结论.【解答】解:①根据抛物线可知:a<0,b<0,c>0,∴abc>0,所以①错误;②因为对称轴x=﹣1,即﹣=﹣1,∴b=2a,∴2a﹣b=0.所以②正确;③从图象可知,顶点的纵坐标高于y=2,所以>2解不等式,两边同乘以4a,因为开口向下,a<0,不等号方向改变,4ac﹣b2<8a所以③正确;④当x=1时,y<0,即a+b+c<0,所以a+2a+c<0,所以3a+c<0.所以④正确;⑤当x=﹣1时,y有最大值,所以当x=﹣1时,a﹣b+c的值最大,当x=m时,y=am2+bm+c,所以a﹣b+c>am2+bm+c,即a﹣b>m(am+b).所以⑤错误.所以有②③④正确.故选:C.【点评】本题考查了二次函数的图象与系数的关系,解决本题的关键是掌握抛物线的相关性质.二.填空题(共12小题)7.如果抛物线y=ax2+2经过点(1,0),那么a的值为﹣2.【分析】把已知点的坐标代入抛物线解析式可求出a的值.【解答】解:把(1,0)代入y=ax2+2得a+2=0,解得a=﹣2.故答案为﹣2.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.8.如果函数是关于x的二次函数,那么k的值是0.【分析】根据二次函数的定义,列出方程与不等式求解即可.【解答】解:由题意得:k2﹣3k+2=2,解得k=0或k=3;又∵k﹣3≠0,∴k≠3.∴k的值是0时.故答案为:0.【点评】本题考查二次函数的定义,关键是掌握二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.9.如果抛物线y=﹣2x2+bx+c的对称轴在y轴的左侧,那么b<0(填入“<”或“>”).【分析】根据二次函数的图象与性质即可求出答案.【解答】解:由对称轴可知:x=<0,∴b<0,故答案为:<【点评】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.10.将抛物线y=2x2+4绕原点O旋转180°,则旋转后的抛物线的解析式为y=﹣2x2﹣4.【分析】求出原抛物线的顶点坐标,再根据关于原点对称的点的横坐标与纵坐标都互为相反数求出旋转后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】解:y=2x2+4的顶点坐标为(0,4),∵抛物线y=2x2+4绕原点O旋转180°,∴旋转后的抛物线的顶点坐标为(0,﹣4),∴旋转后的抛物线的解析式为y=﹣2x2﹣4.故答案是:y=﹣2x2﹣4.【点评】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化更简便.11.若抛物线y=ax2+bx+c的系数a,b,c满足a﹣b+c=0,则这条抛物线必经过点(﹣1,0).【分析】把x=﹣1代入抛物线的关系式得y=a﹣b+c,而a﹣b+c=0,因此抛物线必过点(﹣1,0)【解答】解:当x=﹣1时,y=a﹣b+c=0,因此抛物线必过点(﹣1,0)故答案为:(﹣1,0)【点评】考查二次函数的图象和性质,考虑抛物线过特殊点时,相应的a、b、c满足的关系是关键.12.如果抛物线y=(k﹣1)x2+9在y轴左侧的部分是上升的,那么k的取值范围是k<1.【分析】利用二次函数的性质得到抛物线开口向下,则k﹣1<0,然后解不等式即可.【解答】解:∵抛物线y=(k﹣1)x2+9在y轴左侧的部分是上升的,∴抛物线开口向下,∴k﹣1<0,解得k<1.故答案为:k<1.【点评】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线开口向上;当a<0时,抛物线开口向下.13.将抛物线y=2(x+2)2+2经过适当的几何变换得到抛物线y=2x2﹣2,请写出一种满足条件的变换方法向右平移2个单位,向下平移4个单位(方法不唯一).【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是平移的方法.【解答】解:∵y=2(x+2)2+2的顶点坐标为(﹣2,2),y=2x2﹣2的顶点坐标为(0,2),∴将抛物线y=2(x+2)2+2向右平移2个单位,再向上平移4个单位,可得到抛物线y=2x2﹣2,故答案为:向右平移2个单位,向下平移4个单位.【点评】本题主要考查了二次函数图象的平移,解答时注意抓住点的平移规律和求出关键点顶点坐标.14.如图,在平面直角坐标系中,抛物线y=x2﹣mx+4与y轴交于点C,过点C作x轴的平行线交抛物线于点B,点A在抛物线上,点B关于点A的对称点D恰好落在x轴负半轴上,过点A作x轴的平行线交抛物线于点E.若点A、D的横坐标分别为1、﹣1,则线段AE与线段CB的长度和为4.【分析】求得B的纵坐标为4,然后根据题意求得A的纵坐标2,即可得到5﹣m=2,求得m的值,得到抛物线为y=x2﹣3x+4,根据坐标特征求得B、A、E的坐标即可求得结果.【解答】解:∵抛物线y=x2﹣mx+4与y轴交于点C,∴C(0,4),∵BC∥x轴,∴点B的纵坐标为4,∵点A的横坐标为1,把x=1代入y=x2﹣mx+4得,y=5﹣m,∴A(1,5﹣m),∵点B关于点A的对称点D恰好落在x轴负半轴上,∴AD=AB,∴点A的纵坐标为2,∴5﹣m=2,解得m=3,∴抛物线为y=x2﹣3x+4,∴B(3,4),∴BC=3,把y=2代入y=x2﹣3x+4得,2=x2﹣3x+4,解得x=1和2,∴AE=2﹣1=1,∴线段AE与线段CB的长度和为4,故答案为4.【点评】本题考查了二次函数图象上点的坐标特征,求得交点坐标是解题的关键.15.如图,在平面直角坐标系中,抛物线y=a(x+1)2+b与y=a(x﹣2)2+b+1交于点A.过点A作y轴的垂线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则线段BC的长为6.【分析】设抛物线y=a(x+1)2+b的对称轴与线段BC交于点E,抛物线y=a(x﹣2)2+b+1的对称轴与线段BC交于点F,由抛物线的对称性结合BC=2(AE+AF),即可求出结论.【解答】解:设抛物线y=a(x+1)2+b的对称轴与线段BC交于点E,抛物线y=a(x﹣2)2+b+1的对称轴与线段BC交于点F,如图所示.由抛物线的对称性,可知:BE=AE,CF=AF,∴BC=BE+AE+AF+CF=2(AE+AF)=2×[2﹣(﹣1)]=6.故答案为:6.【点评】本题考查了二次函数的性质,利用二次函数图象的对称性解决问题是解题的关键.16.已知二次函数y1=x2+2x﹣3的图象如图所示.将此函数图象向右平移2个单位得抛物线y2的图象,则阴影部分的面积为8.【分析】根据题意知阴影部分面积等于平行四边形面积,由平行四边形的面积公式可得到阴影部分的面积.【解答】解:由题意知,y1=x2+2x﹣3=(x+1)2﹣4,则顶点坐标是(﹣1,﹣4).所以,阴影部分的面积为:2×4=8.故答案是:8.【点评】本题考查了二次函数图象与几何变换,图形的面积,要求熟练掌握平移的规律:左加右减,上加下减.17.如图,在平面直角坐标系中,点O是边长为2的正方形ABCD的中心.函数y=(x﹣h)2的图象与正方形ABCD有公共点,则h的取值范围是﹣2≤h≤2.【分析】由于函数y=(x﹣h)2的图象为开口向上,顶点在x轴上的抛物线,故可先分别得出点A和点B的坐标,因为这两个点为抛物线与正方形ABCD有公共点的临界点,求出即可得解.【解答】解:∵点O是边长为2的正方形ABCD的中心,∴点A和点B坐标分别为(1,1)和(﹣1,1),∵函数y=(x﹣h)2的图象为开口向上,顶点在x轴上的抛物线,∴其图象与正方形ABCD有公共点的临界点为点A和点B,把点B坐标代入y=(x﹣h)2,得1=(﹣1﹣h)2∴h=0(舍)或h=﹣2;把点A坐标代入y=(x﹣h)2,得1=(1﹣h)2∴h=0(舍)或h=2.函数y=(x﹣h)2的图象与正方形ABCD有公共点,则h的取值范围是﹣2≤h≤2.故答案为:﹣2≤h≤2.【点评】本题考查二次函数图象与正方形交点的问题,需要先判断抛物线的开口方向,顶点位置及抛物线与正方形二者的临界交点,需要明确临界位置及其求法.18.如图,正方形OABC和矩形CDEF在平面直角坐标系中,CD=2DE,点O、C、F在y轴上,点A在x轴上,O为坐标原点,点M为线段OC的中点,若抛物线y=ax2+b经过M、B、E三点,则的值等于.【分析】设正方形OABC的边长为m,DE=CF=n,EF=CD=2n,由此表示出点M、点B和点E的坐标,代入点B的坐标求得求得函数解析式,进一步代入点E,用n表示出m,进一步求得的值即可.【解答】解:设正方形OABC的边长为m,DE=n,CD=EF=2n,∵点M为OC的中点,∴点M为(0,m)、点B为(m,m)和点E为(2n,m+n),∵抛物线y=ax2+b经过M,B,E三点,∴m=am2+,解得:a=,∴抛物线y=x2+,把点E(2n,m+n)代入抛物线得m+n=•4n2+,解得:m=(﹣1)n或m=(﹣﹣1)n不合题意,舍去),∴==.【点评】此题考查二次函数综合题,综合考查了正方形的性质,待定系数法求函数解析式,根据图象和待定系数法得出二次函数解析式是解决问题的关键.三.解答题(共7小题)19.已知二次函数y=x2﹣4x+3.(1)在网格中,画出该函数的图象.(2)(1)中图象与x轴的交点记为A,B,若该图象上存在一点C,且△ABC的面积为3,求点C的坐标.【分析】(1)把函数解析式整理成顶点式形式,然后写出顶点坐标和对称轴即可,然后令y=0解方程求出x的值,即可得到与x轴的坐标即可;(2)先去的A、B的坐标,然后根据三角形的面积求得高,进而求得C的坐标.【解答】解:(1)(2)令y=0,代入y=x2﹣4x+3,则x=1,3,∴A(0,1),B(0,3),∴AB=2,∵△ABC的面积为3,∴AB为底的高为3,令y=3,代入y=x2﹣4x+3,则x=0,4,∴C(0,3)或(4,3).【点评】本题考查了二次函数图象以及二次函数的性质,主要考查了顶点坐标的求解和与x轴的交点的求解方法,利用数形结合的思想求解是解题的关键.20.将抛物线y=先向上平移2个单位,再向左平移m(m>0)个单位,所得新抛物线经过点(﹣1,4),求新抛物线的表达式及新抛物线与y轴交点的坐标.【分析】利用二次函数平移的性质得出平移后解析式,进而利用x=0时求出新抛物线与y轴交点的坐标.【解答】解:由题意可得:y=(x+m)2+2,代入(﹣1,4),解得:m1=3,m2=﹣1(舍去),故新抛物线的解析式为:y=(x+3)2+2,当x=0时,y=,即与y轴交点坐标为:(0,).【点评】此题主要考查了二次函数图象与几何变换,正确利用二次函数平移的性质得出解析式是解题关键.21.抛物线y=x2﹣2x+c经过点(2,1).(1)求抛物线的顶点坐标;(2)将抛物线y=x2﹣2x+c沿y轴向下平移后,所得新抛物线与x轴交于A、B两点,如果AB=2,求新抛物线的表达式.【分析】(1)把(2,1)代入y=x2﹣2x+c中求出c的值即可得到抛物线解析式,然后配成顶点式得到顶点坐标;(2)先确定抛物线y=x2﹣2x+1的对称轴,再利用抛物线的对称性得到A(0,0),B(2,0),然后利用交点式可写出新抛物线的表达式.【解答】解:(1)把(2,1)代入y=x2﹣2x+c得4﹣4+c=1,解得c=1,所以抛物线解析式为y=x2﹣2x+1,y=(x﹣1)2,所以抛物线顶点坐标为(1,0);(2)y=x2﹣2x+1=(x﹣1)2,抛物线的对称轴为直线x=1,而新抛物线与x轴交于A、B两点,AB=2,所以A(0,0),B(2,0),所以新抛物线的解析式为y=x(x﹣2),即y=x2﹣2x.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.22.抛物线y=ax2+bx+c(a≠0)向右平移2个单位得到抛物线y=a(x﹣3)2﹣1,且平移后的抛物线经过点A(2,1).(1)求平移后抛物线的解析式;(2)设原抛物线与y轴的交点为B,顶点为P,平移后抛物线的对称轴与x轴交于点M,求△BPM的面积.【分析】(1)把点A代入平移后的抛物线y=a(x﹣3)2﹣1来求a的值;(2)根据平移前、后的函数解析式,然后求出B、P、M三点的坐标,根据三角形的面积公式即可求出△BPM的面积.【解答】解:(1)把点A(2,1)代入y=a(x﹣3)2﹣1,得1=a(2﹣3)2﹣1,整理,得1=a﹣1,解得a=2.则平移后的抛物线解析式为:y=2(x﹣3)2﹣1;(2)由(1)知,平移后的抛物线解析式为:y=2(x﹣3)2﹣1,则M(3,0).∵抛物线y=ax2+bx+c(a≠0)向右平移2个单位得到抛物线y=2(x﹣3)2﹣1,∴平移前的抛物线解析式为:y=2(x﹣1)2﹣1.∴P(1,﹣1).令x=0,则y=1.故B(0,1),∴BM=易推知BM2=BP2+PM2,即△BPM为直角三角形,∴S△BPM=BP•MP=××=.【点评】本题主要考查了二次函数解析式的确定、图形的面积求法、函数图象交点等知识及综合应用知识、解决问题的能力.23.我们定义两个不相交的函数图象在竖直方向上的最短距离为这两个函数的“和谐值”.(1)求抛物线y=x2﹣2x+2与x轴的“和谐值”;(2)求抛物线y=x2﹣2x+2与直线y=x﹣1的“和谐值”.(3)求抛物线y=x2﹣2x+2在抛物线y=x2+c的上方,且两条抛物线的“和谐值”为2,求c的值.【分析】(1)利用顶点式即可解决问题;(2)如图,P点为抛物线y=x2﹣2x+2任意一点,作PQ∥y轴交直线y=x﹣1于Q,设P(t,t2﹣2t+2),则Q(t,t﹣1),可得PQ=t2﹣2t+2﹣(t﹣1)=t2﹣3t+3=(t﹣)2+,利用二次函数的性质即可解决问题;(3)M点为抛物线y=x2﹣2x+2任意一点,作MN∥y轴交抛物线y=x2+c于N,设P(t,t2﹣2t+2),则N(t,t2+c),可得MN=t2﹣2t+2﹣(t2+c)=t2﹣2t+2﹣c=(t﹣2)2﹣c,利用二次函数的性质即可解决问题;【解答】解:(1)∵y=(x﹣1)2+1,∴抛物线上的点到x轴的最短距离为1,∴抛物线y=x2﹣2x+2与x轴的“和谐值”为1;(2)如图,P点为抛物线y=x2﹣2x+2任意一点,作PQ∥y轴交直线y=x﹣1于Q,设P(t,t2﹣2t+2),则Q(t,t﹣1),∴PQ=t2﹣2t+2﹣(t﹣1)=t2﹣3t+3=(t﹣)2+,当t=时,PQ有最小值,最小值为,∴抛物线y=x2﹣2x+3与直线y=x﹣1的“和谐值”为,(3)M点为抛物线y=x2﹣2x+2任意一点,作MN∥y轴交抛物线y=x2+c于N,设P(t,t2﹣2t+2),则N(t,t2+c),∴MN=t2﹣2t+2﹣(t2+c)=t2﹣2t+2﹣c=(t﹣2)2﹣c,当t=2时,MN有最小值,最小值为﹣c,∴抛物线y=x2﹣2x+2与抛物线y=x2+c的“和谐值”为﹣c,∴﹣c=2,∴c=﹣2.【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;正确理解新定义的能力.24.在平面直角坐标系xOy中,抛物线C:y=x2+(3﹣m)x经过点A(﹣1,0).(1)求抛物线C的表达式;(2)将抛物线C沿直线y=1翻折,得到的新抛物线记为C1,求抛物线C1的顶点坐标;(3)将抛物线C沿直线y=n翻折,得到的图象记为C2,设C与C2围成的封闭图形为M,在图形M上内接一个面积为4的正方形(四个顶点均在M上),且这个正方形的边分别与坐标轴平行.求n的值.【分析】(1)把点A(﹣1,0)代入y=x2+(3﹣m)x,根据待定系数法即可求得.(2)把抛物线C的表达式化成顶点式,求得顶点P的坐标,然后求得关于直线y=1的对称点P′的坐标,即为抛物线C1的顶点坐标;(3)由抛物线C的顶点式求得对称轴,然后根据正方形的边长求得B的坐标,进而得出,解得n=.【解答】解:(1)∵抛物线C:y=x2+(3﹣m)x经过点A(﹣1,0),∴1﹣(3﹣m)=0.∴m=2.∴抛物线C的表达式为y=x2+x.(2)∵抛物线C:y=x2+x=(x+)2﹣,∴抛物线C的顶点为,如图1,点关于直线y=1的对称点为P'.∴抛物线C1的顶点坐标为.(3)∵抛物线C:y=x2+x=(x+)2﹣,∴抛物线的对称轴为,∵正方形的边长为2,∴正方形的顶点B的坐标为,如图2.∴.∴.【点评】本题考查了待定系数法求二次函数的解析式以及二次函数的图象与几何变换,熟练掌握轴对称的性质、正方形的性质是解题的关键.25.小明在课外

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论