版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题20.1数据的分析重难点题型10个题型1算术平均数及相关计算【解题技巧】1)算术平均数:一般地,有n个数x1,x2,…,xn,那么=。简称平均数。算术平均数反映了这一组数据的集中趋势,表示了这组数据的平均水平。注:当任一数据变化时,都会影响算术平均数。2)结论:若=;=。则:=1\*GB3①x1±y1,x2±y2,…,xn±yn的平均数为x±y;=2\*GB3②x1,y1,x2,y2…,xn,yn的平均数为x+y)。=3\*GB3③ax1+b,ax2+b,…,axn+b的平均数为ax+b。∵ax1,ax2,…,axn的平均数为ax;∴x1+b,x2+b,…,xn+b的平均数为x+b。1.(2022·浙江·永嘉县八年级期中)数据3,4,5,6,7的平均数是___________.2.(2022·湖南·长沙市八年级期末)一组数据2,1,4,x,6的平均值是4,则x的值为(
)A.3 B.5 C.6 D.73.(2022·河南新乡·八年级期末),,…,的平均数为m,,,…,的平均数为n,则,,…,的平均数为(
)A. B. C. D.4.(2022·辽宁葫芦岛·八年级期末)将一组数据的每一个数都减去30,所得新的一组数据的平均数是1,则原来那组数据的平均数为(
)A.31 B.30 C.1 D.295.(2022·河北·邢台市八年级阶段练习)已知一组数据、、、、的平均数是5,则另一组新数组、、、、的平均数是_____.6.(2022·重庆九年级阶段练习)有5个正整数,,,,,某数学兴趣小组的同学对5个正整数作规律探索,找出同时满足以下3个条件的数.①,,是三个连续偶数,②,是两个连续奇数(),③.该小组成员分别得到一个结论:甲:取,5个正整数不满足上述3个条件;乙:取,5个正整数满足上述3个条件;丙:当满足“是4的倍数”时,5个正整数满足上述3个条件;丁:5个正整数满足上述3个条件,则,,的平均数与,的平均数之和是10p(p为正整数);以上结论正确的个数有(
)个A.1 B.2 C.3 D.4题型2加权平均数及相关计算【解题技巧】加权平均数:一般地,若n个数x1,x2,…,xn的权分别是ω1,ω2,…,ωn,则eq\f(x1ω1+x2ω2+…+xnωn,ω1+ω2+…+ωn)叫做这n个数的加权平均数.前面求算术平均数,是将每个数据认为同等重要,即每个数据的权重都是1。注意:计算平均数时注意分辨是算术平均数还是加权平均数,两者计算方法有差异,不能混淆.1.(2022·湖南·宁远八年级阶段练习)某次演讲比赛四名选手的成绩统计如下表(单位:分)项目成绩小李小张小王小周评委90948592观众95889494将评委、观众按的比例进行打分,成绩最高的是(
)A.小李 B.小张 C.小王 D.小周2.(2022·陕西·商南八年级期末)西安秦始皇陵兵马俑博物馆拟招聘一名优秀讲解员,小婷的笔试、试讲、面试三轮测成绩分别为分、分、分,综合成绩中笔试占,试讲占,面试占,那么小婷的最后成绩为___________分.3.(2022·广东·陆河八年级阶段练习)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是__________.4.(2022·山东·宁津县育新中学八年级阶段练习)自1996年起,我国确定每年3月份最后一周的星期一,为全国中小学生“安全教育日”.2018年3月26日是第二十三个全国中小学生安全教育日.某中学八年级开展了交通安全为主题的演讲比赛.其中两名参赛选手的各项得分如下表:项目演讲内容演讲技巧仪表形象甲959085乙909590如果规定:演讲内容、演讲技巧、仪表形象按6:3:1计算成绩,那么甲、乙两人的成绩谁更高?(
)A.甲 B.乙 C.甲乙一样高 D.无法确定5.(2022·浙江·余姚市兰江中学八年级期中)浙江某大学部分专业采用“三位一体”的形式进行招生,现有甲、乙两名学生,他们各自的三类成绩(已折算成满分100分)如表所示:学生学业水平测试成绩综合测试成绩高考成绩甲858981乙888183(1)如果根据三项得分的平均数,那么哪位同学排名靠前?(2)“三位一体”根据入围考生志愿,按综合成绩从高分到低分择优录取,综合成绩按“学业水平测试成绩×20%+综合测试成绩×20%+高考成绩×60%”计算形成,那么哪位同学排名靠前?6.(2022·浙江金华·八年级期末)学校准备从甲乙两位选手中选择一位,代表学校参加所在地区的汉字听写大赛,总评成绩由“表达能力、阅读理解、综合素质和汉字听写”四部分组成.甲,乙两位选手的成绩如下表,请解答下列问题:选手表达能力阅读理解综合素质汉字听写甲85788573乙73808283(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩.(2)已知四部分占总评成绩的比例如图所示.①求图中表示“阅读理解”的扇形的圆心角度数;②通过计算甲,乙两名选手的总评成绩,你认为学校派谁参加比赛合适?题型3众数与中位数的相关计算【解题技巧】1)中位数:将一组数据从小到大(或从大到小)排列,如果数据是奇数个,则处于中间的数为中位数;若数据是偶数个,则中间两个数据的平均数为中位数。注:=1\*GB3①所有数据需排列(从大到小或从小到大);=2\*GB3②中位数有可能不是这组数据中的数;=3\*GB3③中位数反映了中间水平。2)众数:一组数据中出现次数最多的数据.注:=1\*GB3①众数不一定唯一;=2\*GB3②众数反应了一组数据中的趋势量,即数据出现频次最高的量。1.(2022·山东·薛城区八年级阶段练习)我区某中学在预防“新冠肺炎”期间,要求学生每日测量体温,九(5)班一名同学连续一周体温情况如表所示:则该名同学这一周体温数据的众数和中位数分别是(
)日期星期一星期二星期三星期四星期五星期六星期天体温(℃)36.236.236.2A.和36.2 B.36.2和 C.36.2和36.2 D.36.2和2.(2022·江苏·无锡市九年级阶段练习)为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如表,则关于这若干户家庭的用水量,下列说法错误的是(
)月用水量/吨户数/户A.众数是B.平均数是C.调查了户家庭的月用水量D.中位数是3.(2022·浙江·宁波市鄞州区教育局教研室八年级期末)一组数据,,,,的中位数和平均数相等,则的值是________.4.(2022·陕西商洛·八年级期末)从小到大排列的一组数据1,2,2,,6,7的中位数为3,则m的值为______.5.(2022·山东滨州·八年级期末)从小到大的一组数据-2,1,2,,6,10的中位数为2,则这组数据的众数是___________.6.(2022·江苏·九年级专题练习)一组数据﹣1,3,1,2,b的唯一众数为﹣1,则这组数据的中位数为__.题型4平均数、众数、中位数的综合运算1.(2022·黑龙江牡丹江·八年级期末)一组数据为1,3,2,2,a,b,c,唯一众数是3,平均数是2,则这组数据的中位数是_______.2.(2022·广东湛江·八年级期末)两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的众数为________.3.(2022·江苏·九年级专题练习)五个正整数,中位数是,众数是,则这五个正整数的平均数是______.4.(2022·湖北黄石·八年级期末)一组2,2x,y,12中,唯一的众数是12,平均数是10,这数据的中位数是_______.5.(2022·福建·厦门八年级期末)已知一组数据由五个正整数组成,它的中位数和众数都是2,则这五个数的和的最小值是(
)A.7 B.8 C.9 D.106.(2022·河北保定·九年级期末)某部门为了解工人的生产能力情况,进行了抽样调查,随机抽取了20名工人每天每人加工零件的个数,整理得到如下统计表和条形统计图.统计量平均数众数中位数数值19.2根据以上信息,解答下列问题:(1)分别求,的值;(2)为调动积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让60%左右的工人能获奖,应根据______来确定奖励标准比较合适(填“平均数”、“众数”或“中位数”);(3)该部门规定:每天加工零件的个数达到或超过21个的工人为生产能手,若该部门有300名工人,试估计该部门生产能手的人数.题型5方差与标准差的相关计算【解题技巧】1)极差:一组数据中最大值与最小值的差2)方差:在一组数据中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差。通常用“”表示,即3)标准差:方差的算数平方根叫做这组数据的标准差,用“s”表示,即结论:若数据a1,a2,……an的方差是s2,则数据a1+b,a2+b,……an+b的方差仍然是s2,数据ka1+b,ka2+b,……kan+b的方差是k2s2.1.(2022·安徽·合肥二模)某班抽取名同学参加体能测试,成绩如下:,,,,,下列表述错误的是(
)A.平均数是 B.极差是 C.中位数是 D.标准差是2.(2022·浙江·宁波市镇海蛟川书院八年级期中)一组数据的方差计算公式为,则这组数据的方差是______.3.(2022·福建·福州日升中学八年级期中)如果有一组数据-2,0,1,3,的极差是6,那么的值是_________.4.(2022·福建·厦门实验中学二模)设数据x1,x2,x3,…,xn的平均数为x,方差S2=0,则下列式子一定正确的是()A.x=0 B.x1+x2+x3+…+xn=0 C.x1=x2=x3=…=xn=0 D.x1=x2=x3=…=xn=x5.(2022·山东烟台·八年级期中)若一组数据13,14,15,16,x的方差比另一组数3,4,5,6,7的方差大,则x的值可能是(
)A.12 B.16 C.17 D.186.(2022·江苏·盐城九年级阶段练习)省射击队要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的4次选拔赛中,甲的射击的成绩如下(单位:环):7、8、9、8.(1)求甲运动员这4次选拔赛成绩的平均数;(2)求甲运动员这4次选拔赛成绩的方差.题型6统计量的选择--众数1.(2022·河北秦皇岛·八年级期末)某幼儿园对全体小朋友爱吃哪种粽子做调查,以决定最终买哪种口味的粽子,下面的调查数据最值得关注的是(
)A.平均数 B.中位数 C.众数 D.方差2.(2022·浙江衢州·八年级期末)一家鞋店对上周某一品牌的销售情况统计如下表:尺码(厘米)22.52323.52424.5销售量(双)251173该店决定本周进鞋时多进些尺码为23.5厘米的鞋,影响鞋店决策的统计量是(
).A.平均数 B.中位数 C.众数 D.方差3.(2022·浙江杭州·八年级阶段练习)“冰墩墩”热潮持续不断,店家为合理进行资金分配,对上月各类型的爆款数量进行数据统计分析,从而确定各款商品批发数量,此时店家应重点参考(
)A.众数 B.平均数 C.中位数 D.方差4.(2022·安徽合肥·八年级期末)某品牌运动鞋专卖店在销售过程中,对近期不同尺码的鞋子销售情况进行了统计,若决定下次进货时,增加一些41码的鞋子,影响该决策的统计量是(
).尺码3940414243平均每天销售数量/双1616252420A.平均数 B.中位数 C.众数 D.方差5.(2022·河北廊坊·八年级期末)某服装店试销一款女式防晒服,试销期间对不同颜色的防晒服的销售情况做了统计.如果服装店经理最关心的是哪种颜色的防晒服最畅销,那么对经理最有意义的统计量是(
)A.平均数 B.众数 C.中位数 D.方差6.(2022·浙江·八年级期中)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的鞋销售量如下表:尺码/厘米2222.52323.52424.525销售量/双12511731如果你是鞋店的经理,你会最关注哪个统计量(
)A.平均数 B.中位数 C.众数 D.方差题型7统计量的选择--中位数1.(2022·河北·石家庄九年级阶段练习)在一次15人参加的歌唱比赛中,预赛成绩各不同要取前8名参加决赛杨超越已经知道自己的成绩,她想知道自己是否能进入决赛,只需要再知道这15名选手成绩的(
)A.平均数 B.众数 C.方差 D.中位数2.(2022·河南洛阳·八年级期末)在一次数学测试中,小明的成绩是75分,超过本班半数同学的成绩,分析得出这个结论所用的统计量是(
)A.平均数 B.众数 C.中位数 D.方差3.(2022·福建·莆田八中八年级期末)为了方便市民出行,打造健康莆田,莆田市政府推出“YouBike微笑自行车”的社会公共服务项目.微笑自行车运营管理公司经过调查获得关于微笑自行车租用骑行时间的数据,并由此制定了收费标准:若每次租用单车骑行a小时以内,则不收取费用;若超过a小时后,超过部分每小时收费1元.为保证不少于50%的骑行是免费的,自行车运营管理公司应从此次调查得到的骑行时间的数据中,选取下列哪个统计了作为a的值(
)A.平均数 B.众数 C.中位数 D.方差4.(2022·吉林长春·八年级期末)某校11名学生演讲赛的成绩各不相同,若某选手想知道自己能否进入前5名,则他不仅要知道自己的成绩,还应知道这11名学生成绩的(
)A.平均数 B.众数 C.方差 D.中位数4.(2022·河南驻马店·八年级期末)杨靖宇将军纪念馆“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分,5个有效评分与7个原始评分相比.这两组数据一定不变的是(
)A.中位数 B.众数 C.平均数 D.以上都不对5.(2022·贵州黔东南·八年级期末)某装配车间为了较合理地确定每名工人标准目产量,车间管理者从过去的工作日中随机地抽查了该车间15名工人在某一天中各自装配机器的数量(单位:台),具体如下:6,7,7,8,8,8,8,9,10,10,11,13,15,15,16.根据抽样的数据,车间管理者将每名工人标准日产量定为9台,其依据是统计数据中的(
)A.最大数据 B.众数 C.中位数 D.平均数6.(2022·河南洛阳·九年级)某停车场规定,停车时间在小时以内收费元,超过小时的,每小时另收元,若要让在该停车场停车的的人只花元钱,应取(
)A.平均数 B.众数 C.中位数 D.方差题型8统计量的选择--方差【解题技巧】极差反映了一组数据中极端值的变化。当极差越小,则数据越稳定;极差越大,则数据极端数值波动越大。方差(标准差)反映整体数据波动情况;方差(标准差)越小,整体数据越稳定。1.(2022·浙江·永嘉县八年级期中)如表记录了甲、乙、丙、丁四名学生近10次英语词汇成绩的数据信息,要选择一名成绩好又发挥稳定的学生参加年级英语词汇比赛,应该选择的是()甲乙丙丁平均数(分)90939392方差()1.58.51.55.5A.甲 B.乙 C.丙 D.丁2.(2022·福建·福州九年级阶段练习)八年级一班的平均年龄是12.5岁,方差是40,过一年后该班学生到九年级时,下列说法正确的是(
)A.平均年龄不变 B.年龄的方差不变 C.年龄的众数不变 D.年龄的中位数不变3.(2021·浙江湖州市·九年级一模)已知某运动队的甲、乙、丙、丁四名射击运动员平时训练的平均成绩(单位:环)以及方差(单位:环)如下表,现要选一名成绩优秀且稳定的队员参加某项比赛,则应选()甲乙丙丁9.09.09.59.50.52.21.70.5A.甲 B.乙 C.丙 D.丁4.(2021·浙江宁波市·九年级二模)一组数据1,2,3,4,5的方差是a,若增加一个数据9,则增加后6个数据的方差为b,则a与b的大小关系是()A.a<b B.a=b C.a>b D.不能确定5.(2022·重庆铜梁·八年级期末)在平均数、中位数、众数、方差等几个统计量中,最能刻画数据波动(离散)程度的量是______.6.(2022·北京·首都师范大学附属中学九年级阶段练习)电影公司随机收集了2000部电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指一类电影中获得好评的部数与该类电影的部数的比值.电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么第____类电影的好评率增加0.1,第____类电影的好评率减少0.1,可以使获得好评的电影总部数与样本中的电影总部数的比值达到最大.题型9平均数、中位数、众数、方差相关判断【解题技巧】平均数的优点:平均数的计算过程中用到了一组数据中的每一个数,因此比中位数和众数更灵敏,反映了更多数据的信息.平均数的缺点:计算较麻烦,而且容易受到极端值的影响.中位数的优点:计算简单,不容易受到极端值的影响,确定了中位数之后,可以知道小于中位数的数值和大于中位数的数值在这组数据中各占一半.中位数的缺点:除了中间的值以外,不能反映其他数据的信息.众数的优点:众数很容易从直方图中获得,它可以清楚地告诉我们:在一组数据中哪个或哪些数值出现的次数最多.众数的缺点:不能反映众数比其他数出现的次数多多少,而且也丢失了很多其他数据的信息.1.(2022·山东·八年级单元测试)某校八年级甲、乙两班举行电脑汉字输入比赛,两个班参加比赛的学生每分钟输入汉字的个数经统计和计算后结果如下表:班级参加人数平均字数中位数方差甲55135149191乙55135151110有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是___________(填序号).2.(2022·成都市·八年级课时练习)某次跳绳比赛中,统计甲、乙两班学生每分钟跳绳的成绩(单位:次)情况如下表:班级参加人数平均次数中位数方差甲45135149180乙45135151130下列三个命题:(1)甲班平均成绩低于乙班平均成绩;(2)甲班成绩的波动比乙班成绩的波动大;(3)甲班成绩优秀人数少于乙班成绩优秀人数.(跳绳次数次为优秀)其中正确的命题是___________.(只填序号)3.(2022·黑龙江·五常市八年级期末)某次体育活动中,统计甲、乙两班学生每分钟跳绳的成绩(单位:次)情况如下:班级参加人数平均成绩(次)中位数(次)方差甲班55135149190乙班55135151110请你从下面三个结论中,选出所有正确的命题①甲班学生的平均成绩高于乙班学生的平均成绩;②甲班学生的成绩波动比乙班学生的成绩波动大;③甲班学生的成绩优秀人数不会多于乙班学生的成绩优秀人数(跳绳次数≥150次为优秀)以上三个结论中正确的是_______(把所有正确的结论的序号填在横线上)4.(2022·北京·九年级专题练习)某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.每日接待游客人数(单位:万人)游玩环境评价好一般拥挤严重拥挤根据以上信息,以下四个判断中,正确的是____(填写所有正确结论的序号).①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;②该景区这个月每日接待游客人数的中位数在万人之间;③该景区这个月平均每日接待游客人数低于5万人;④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为.5.(2022·江苏·苏州二模)牛年伊始,中国电影行业迎来了开门红.春节档期全国总观影人次超过1.6亿,总票房超过80亿元.以下是甲、乙两部春节档影片上映后的票房信息.a.两部影片上映第一周单日票房统计图.b.两部影片分时段累计票房如下上映影片2月12日-18日累计票房(亿元)2月19-21日累计票房(亿元)甲31.56乙37.222.95(以上数据来源于中国电影数据信息网).根据以上信息,回答下列问题:(1)2月12日-18日的一周时间内,影片乙单日票房的中位数为__________;(2)对于甲、乙两部影片上映第一周的单日票房,下列说法中所有正确结论的序号是__________;①甲的单日票房逐日增加;②甲单日票房的方差小于乙单日票房的方差;③在第一周的单日票房统计中,甲超过乙的差值于2月17日达到最大.(3)截止到2月21日,影片甲上映后的总票房超过了影片乙,据此估计,2月19日-21日三天内影片甲的累计票房应超过_________亿元.6.(2022·北京·九年级专题练习)某公司销售一批新上市的产品,公司收集了这个产品15天的日销售额的数据,制作了如下的统计图.关于这个产品销售情况有以下说法:①第1天到第5天的日销售额的平均值低于第6天到第10天的日销售额的平均值;②第6天到第10天日销售额的方差小于第11天到第15天日销售额的方差;③这15天日销售额的平均值一定超过2万元.所有正确结论的序号是________.题型10统计综合题1.(2022·重庆南开中学八年级期末)2022年,教育部制定了独立的《义务教育劳动课程标准》,其中规定:以劳动项目为载体,以孩子经历体验劳动过程为基本要求,培养学生的核心劳动素养.某校分别从该校七、八年级学生中各随机调查了100名学生,统计他们上周的劳动时间,劳动时间记为x分钟,将所得数据分为5个组别(A组:;B组:;C组:;D组:;E组:),将数据进行分析,得到如下统计:①八年级B组学生上周劳动时间从高到低排列,排在最后的10个数据分别是:82,82,81,81,81,81,80,80,80,80.②八年级100名学生上周劳动时间频数分布统计表:分组ABCDE频数14b27136③七、八年级各100名学生上周劳动时间的平均数、中位数、众数如下表:年级平均数中位数众数七年级81.379.582八年级81.3c83④七年级100名学生上周劳动时间分布扇形统计图请你根据以上信息,回答下列问题:(1)______,______,______;(2)根据以上数据分析,你认为七、八年级哪个年级学生上周劳动情况更好,请说明理由;(写出一条即可)(3)已知七年级有800名学生,八年级有600名学生,请估计两个年级上周劳动时间在80分钟以上(含80分钟)的学生一共有多少人?2.(2022·福建泉州·八年级期末)2022年春季,安溪县初中数学学科教学联盟组编写“县本小单元分层作业”测试卷,现将某试点校八年级甲、乙两位选做“强基”层次的同学的10次测试成绩,绘制如图统计图.(1)根据图中提供的数据列出如表统计表:平均成绩(分)众数(分)甲80b乙a90则a=,b=.(2)现在要从这两位同学中选派一位参加数学素养竞赛,根据以上信息你认为应该选派谁?请简要说明理由.3.(2021·广西来宾·中考真题)某水果公司以元/的成本价新进箱荔枝,每箱质量,在出售荔枝前,需要去掉损坏的荔枝,现随机抽取箱,去掉损坏荔枝后称得每箱的质量(单位:)如下:
整理数据:分析数据:质量()平均数众数中位数数量(箱)(1)直接写出上述表格中,,的值;(2)平均数、众数、中位数都能反映这组数据的集中趋势,请根据以上样本数据分析的结果,任意选择其中一个统计量,估算这箱荔枝共损坏了多少千克?(3)根据(2)中的结果,求该公司销售这批荔枝每千克定为多少元才不亏本?(结果保留一位小数)4.(2022·北京市九年级开学考试)为进一步增强中小学生“知危险会避险”的意识,某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制),并对数据(成绩)进行收集、整理、描述和分析.下面给出了部分信息.a.这30名学生第一次竞赛成绩和第二次竞赛成绩得分情况统计图:b.下表是这30名学生两次知识竞赛的获奖情况相关统计:参与奖优秀奖卓越奖第一次竞赛人数101010平均分828795第二次竞赛人数21216平均分848793(规定:分数90,获卓越奖;85分数<90,获优秀奖;分数<85,获参与奖)c.第二次竞赛获卓越奖的学生成绩如下:90
90
91
91
91
91
92
93
93
94
94
94
95
95
96
98d.两次竞赛成绩样本数据的平均数、中位数、众数如下表:平均数中位数众数第一次竞赛m87.588第二次竞赛90n91根据以上信息,回答下列问题:(1)小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分,在图中用“○”圈出代表小松同学的点;(2)直接写出m,n的值;(3)可以推断出第次竞赛中初三年级全体学生的成绩水平较高,理由是.5.(2022·重庆市开州区九年级阶段练习)2021年,全世界自然灾害形势严峻,洪水、地震等不仅给人们的财产带来巨大损失,更是威胁着人们的生命安全.保护生态环境即是保护民生,功在当代,利在千秋;做好综合环境治理,协调人与自然的关系,以求人和自然和谐相处迫在眉急.近日,某校组织了一场关于防自然灾害的知识讲座,并在讲座后进行了满分为100分的“防自然灾害知识测评”,为了了解学生的测评情况,该校在七、八年级中分别抽取了50名学生的分数进行整理分析,已知分数x均为整数,且分为A,B,C,D,E五个等级,分别是A:;:;:;:;:.并给出了部分信息:【一】八年级D等级的学生人数占八年级抽取人数的20%;七年级C等级中最低的10个分数分别为:70,70,72,73,73,73,74,74,75,75;【二】两个年级学生防自然灾害知识测评分数统计图:【三】两个年级学生防自然灾害知识测评分数样本数据的平均数、中位数、众数如下:平均数中位数众数七年级76a72八年级767573(1)填空:a=,m=,补全条形统计图;(2)根据以上数据,你认为在此次测评中,哪一个年级的学生对防自然灾害知识掌握较好?请说明理由(说明一条即可).(3)若分数不低于90分表示该生对防自然灾害知识测评等级为优秀,且该校七年级有1000人,八年级有1200人,请估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有多少人?6.(2022·江苏丹阳·初三二模)某校需要选出一名同学去参加市“生活中的数学说题”比赛,现有名候选人参加该校举办的模拟说题比赛,挑选出成绩最高者参加说题比赛.已知名候选人模拟说题比赛成绩情况如表所示.某校名候选人模拟说题比赛成绩情况候选人模拟说题比赛成绩8375908590名候选人模拟说题比赛)成绩的中位数是由于两名候选人成绩并列第一;所以学校决定根据两人平时成绩、任课老师打分、模拟说题比赛成绩按的比例最后确定成绩,最终谁将参加说题比赛.已知两名候选人平时成绩、任课老师打分情况如表所示.请你通过计算说明最终谁将参加说题比赛?平时成绩9585任课老师打分8090专题20.1数据的分析重难点题型10个题型1算术平均数及相关计算【解题技巧】1)算术平均数:一般地,有n个数x1,x2,…,xn,那么=。简称平均数。算术平均数反映了这一组数据的集中趋势,表示了这组数据的平均水平。注:当任一数据变化时,都会影响算术平均数。2)结论:若=;=。则:=1\*GB3①x1±y1,x2±y2,…,xn±yn的平均数为x±y;=2\*GB3②x1,y1,x2,y2…,xn,yn的平均数为x+y)。=3\*GB3③ax1+b,ax2+b,…,axn+b的平均数为ax+b。∵ax1,ax2,…,axn的平均数为ax;∴x1+b,x2+b,…,xn+b的平均数为x+b。1.(2022·浙江·永嘉县八年级期中)数据3,4,5,6,7的平均数是___________.【答案】5【分析】根据平均数的的计算公式列出算式,进行计算即可.【详解】解:这组数据的平均数=(3+4+5+6+7)÷5=5,故答案是:5.【点睛】主要考查了平均数,用到的知识点是平均数的计算公式,熟记算术平均数公式是解题的关键.2.(2022·湖南·长沙市八年级期末)一组数据2,1,4,x,6的平均值是4,则x的值为(
)A.3 B.5 C.6 D.7【答案】D【分析】根据平均数的定义,即可求解.【详解】解:∵一组数据2,1,4,x,6的平均值是4,∴,解得:.故选:D【点睛】本题主要考查了根据平均数求未知量,熟练掌握平均数等于一组数据的总和除以数据的个数是解题的关键.3.(2022·河南新乡·八年级期末),,…,的平均数为m,,,…,的平均数为n,则,,…,的平均数为(
)A. B. C. D.【答案】D【分析】利用平均数的定义直接求解.平均数:是指一组数据中所有数据之和再除以数据的个数.【详解】解:∵x1,x2,…,x20的平均数为m,x21,x22,…,x66的平均数为n,∴x1,x2,…,x20的和为20m,x21,x22,…,x66的和为46n,,∴x1,x2,…,x66的平均数为.故选D.【点睛】本题考查了求一组数据的平均数,掌握平均数的定义是解题的关键.4.(2022·辽宁葫芦岛·八年级期末)将一组数据的每一个数都减去30,所得新的一组数据的平均数是1,则原来那组数据的平均数为(
)A.31 B.30 C.1 D.29【答案】A【分析】设这组数据的平均数为=a,根据每个数都减去30的平均数为,,求得a=31.【详解】设这组数据的平均数为=a,每个数都减去30,其平均数为,=a-=a-30=1,解得a=31.故选A.【点睛】本题主要考查了平均数,解决问题的关键是熟练掌握平均数的定义和计算方法.5.(2022·河北·邢台市八年级阶段练习)已知一组数据、、、、的平均数是5,则另一组新数组、、、、的平均数是_____.【答案】8【分析】根据原数据的平均数为5,计算所有原数据的总和为25,即可求出新数据的平均数.【详解】、、、、的平均数是5,,新数据的平均数为:,故答案为:8.【点睛】本题考查了平均数,解题关键是熟记平均数公式:平均数=所有数的总和÷数的个数.6.(2022·重庆九年级阶段练习)有5个正整数,,,,,某数学兴趣小组的同学对5个正整数作规律探索,找出同时满足以下3个条件的数.①,,是三个连续偶数,②,是两个连续奇数(),③.该小组成员分别得到一个结论:甲:取,5个正整数不满足上述3个条件;乙:取,5个正整数满足上述3个条件;丙:当满足“是4的倍数”时,5个正整数满足上述3个条件;丁:5个正整数满足上述3个条件,则,,的平均数与,的平均数之和是10p(p为正整数);以上结论正确的个数有(
)个A.1 B.2 C.3 D.4【答案】C【分析】根据每个结论,分别利用题中的3个条件,表示出,,,,,5个数,通过各自的特点与要求进行求解.【详解】解:甲:若,由条件①可得,,,由条件②可得,,由条件③可得,,解得,而为奇数,不符合条件,故甲结论正确;乙:若,由条件①可得,,,由条件②可得,,由条件③可得,,解得,为奇数,符合题意,故乙结论正确;丙:若是4的倍数,设是正整数),条件①可得,,,条件②可得,,由条件③可得,,解得,可知为奇数,符合题意,故丙结论正确;丁:设是正整数),条件①可得,,,条件②可得,,,是奇数,条件③可得,,得,,,,的平均数为,,的平均数为,,,的平均数与,的平均数之和可表示为,是正整数,是5的倍数,但不是10的倍数,故丁结论错误.故选:C.【点睛】本题考查列代数式、奇偶数的定义、解一元一次方程,解题的关键是分别表示出5个符合结论和题干的数,然后利用5个数的特点进行求解.题型2加权平均数及相关计算【解题技巧】加权平均数:一般地,若n个数x1,x2,…,xn的权分别是ω1,ω2,…,ωn,则eq\f(x1ω1+x2ω2+…+xnωn,ω1+ω2+…+ωn)叫做这n个数的加权平均数.前面求算术平均数,是将每个数据认为同等重要,即每个数据的权重都是1。注意:计算平均数时注意分辨是算术平均数还是加权平均数,两者计算方法有差异,不能混淆.1.(2022·湖南·宁远八年级阶段练习)某次演讲比赛四名选手的成绩统计如下表(单位:分)项目成绩小李小张小王小周评委90948592观众95889494将评委、观众按的比例进行打分,成绩最高的是(
)A.小李 B.小张 C.小王 D.小周【答案】D【分析】分别计算四名候选人的加权平均数,然后做出判断即可.【详解】解:小李的成绩:;小张的成绩:;小王的成绩:;小周的成绩:;综上所述,小周得分最高,故选:D.【点睛】本题考查加权平均数的含义与求法的实际应用,解题的关键是根据题意熟练运用加权平均数的公式进行计算.2.(2022·陕西·商南八年级期末)西安秦始皇陵兵马俑博物馆拟招聘一名优秀讲解员,小婷的笔试、试讲、面试三轮测成绩分别为分、分、分,综合成绩中笔试占,试讲占,面试占,那么小婷的最后成绩为___________分.【答案】##【分析】由小婷的笔试、试讲、面试三轮测试成绩分别为分、分、分,再分别乘以各自的权重,再求和即可得到答案.【详解】解:小婷的最后得分为:(分),故答案为:.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.3.(2022·广东·陆河八年级阶段练习)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是__________.【答案】22.5元【分析】根据加权平均数定义即可求出这天销售的四种商品的平均单价.【详解】解:这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),故答案为:22.5元【点睛】本题考查了扇形统计图及加权平均数,解决本题的关键是掌握加权平均数的定义.4.(2022·山东·宁津县育新中学八年级阶段练习)自1996年起,我国确定每年3月份最后一周的星期一,为全国中小学生“安全教育日”.2018年3月26日是第二十三个全国中小学生安全教育日.某中学八年级开展了交通安全为主题的演讲比赛.其中两名参赛选手的各项得分如下表:项目演讲内容演讲技巧仪表形象甲959085乙909590如果规定:演讲内容、演讲技巧、仪表形象按6:3:1计算成绩,那么甲、乙两人的成绩谁更高?(
)A.甲 B.乙 C.甲乙一样高 D.无法确定【答案】A【分析】根据加权平均数的定义列式计算可得.【详解】解:甲的得分为(分),乙的得分为(分),∵92.5>91.5,∴甲的成绩更高.故选:A【点睛】本题考查了加权平均数,熟练掌握加权平均数的求法是解本题的关键.5.(2022·浙江·余姚市兰江中学八年级期中)浙江某大学部分专业采用“三位一体”的形式进行招生,现有甲、乙两名学生,他们各自的三类成绩(已折算成满分100分)如表所示:学生学业水平测试成绩综合测试成绩高考成绩甲858981乙888183(1)如果根据三项得分的平均数,那么哪位同学排名靠前?(2)“三位一体”根据入围考生志愿,按综合成绩从高分到低分择优录取,综合成绩按“学业水平测试成绩×20%+综合测试成绩×20%+高考成绩×60%”计算形成,那么哪位同学排名靠前?【答案】(1)甲同学排名靠前(2)乙同学排名靠前【分析】(1)利用平均数的公式即可直接求解,即可判断;(2)利用加权平均数公式求解,即可判断.(1)解:甲的平均数为分,乙的平均数为分,∵85>84,∴根据三项得分的平均数,甲同学排名靠前;(2)解:甲同学的综合成绩为分,乙同学的综合成绩为分,∵83.6>83.4,∴乙同学排名靠前.【点睛】本题考查了算术平均数和加权平均数的计算.熟练掌握算术平均数和加权平均数的计算方法是解题的关键.6.(2022·浙江金华·八年级期末)学校准备从甲乙两位选手中选择一位,代表学校参加所在地区的汉字听写大赛,总评成绩由“表达能力、阅读理解、综合素质和汉字听写”四部分组成.甲,乙两位选手的成绩如下表,请解答下列问题:选手表达能力阅读理解综合素质汉字听写甲85788573乙73808283(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩.(2)已知四部分占总评成绩的比例如图所示.①求图中表示“阅读理解”的扇形的圆心角度数;②通过计算甲,乙两名选手的总评成绩,你认为学校派谁参加比赛合适?【答案】(1)79.5(2)①;②学校派乙参加比赛合适【分析】(1)根据平均数的定义求解即可;(2)①用360度乘以阅读理解的占比即可得到答案;②分别求出甲、乙两人的总成绩即可得到答案.(1)解:由题意得,乙的平均成绩为;(2)解:①由题意得:图中表示“阅读理解”的扇形的圆心角度数为②甲的总成绩为:,乙的总成绩为:,∵80.4>79.5,∴学校派乙参加比赛合适.【点睛】本题主要考查了求平均数,求加权平均数,求扇形圆心角度数,利用平均数做决策等等,正确理解题意是解题的关键.题型3众数与中位数的相关计算【解题技巧】1)中位数:将一组数据从小到大(或从大到小)排列,如果数据是奇数个,则处于中间的数为中位数;若数据是偶数个,则中间两个数据的平均数为中位数。注:=1\*GB3①所有数据需排列(从大到小或从小到大);=2\*GB3②中位数有可能不是这组数据中的数;=3\*GB3③中位数反映了中间水平。2)众数:一组数据中出现次数最多的数据.注:=1\*GB3①众数不一定唯一;=2\*GB3②众数反应了一组数据中的趋势量,即数据出现频次最高的量。1.(2022·山东·薛城区八年级阶段练习)我区某中学在预防“新冠肺炎”期间,要求学生每日测量体温,九(5)班一名同学连续一周体温情况如表所示:则该名同学这一周体温数据的众数和中位数分别是(
)日期星期一星期二星期三星期四星期五星期六星期天体温(℃)36.236.236.2A.和36.2 B.36.2和 C.36.2和36.2 D.36.2和【答案】B【分析】根据众数和中位数的定义计算选择即可.【详解】因为出现次数最多的数据是36.2,故数据的众数是36.2;因为36.2,36.2,36.2,36.3,36.3,36.4,36.5,中间的数是36.3,所以数据的中位数是36.3,故选B.【点睛】本题考查了众数即出现次数最多的数据;中位数即将数据排序后中间的数据或中间两个数据的平均数,正确理解定义是解题的关键.2.(2022·江苏·无锡市九年级阶段练习)为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如表,则关于这若干户家庭的用水量,下列说法错误的是(
)月用水量/吨户数/户A.众数是B.平均数是C.调查了户家庭的月用水量D.中位数是【答案】B【分析】利用统计量的定义解题即可.【详解】解:A、出现了次,出现的次数最多,则众数是,故说法正确,本选项不符合题意;B、这组数据的平均数是:,故说法错误,本选项符合题意;C、调查的户数是,故说法正确,本选项不符合题意;D、这组数据从小到大排列,最中间的两个数的平均数是,故说法正确,本选项不符合题意;故选:B.【点睛】本题主要考查统计量的定义及计算方法,熟练的掌握众数,平均数,中位数的定义是解题关键.3.(2022·浙江·宁波市鄞州区教育局教研室八年级期末)一组数据,,,,的中位数和平均数相等,则的值是________.【答案】-3或或7【分析】根据中位数、平均数的意义列方程求解即可.【详解】解:由于数据1,2,4,6,x的中位数可能为2、4、x,且这组数据1,2,4,6,x的中位数和平均数相等,所以,或,或解得x=-3或x=7或x=,故答案为:-3或7或.【点睛】本题考查中位数、算术平均数,掌握中位数、算术平均数的计算方法是正确解答的前提.4.(2022·陕西商洛·八年级期末)从小到大排列的一组数据1,2,2,,6,7的中位数为3,则m的值为______.【答案】4【分析】根据中位数的定义即可求解.【详解】解:由题意可得,3,解得m=4.故答案为:4.【点睛】本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.掌握定义是解题的关键.5.(2022·山东滨州·八年级期末)从小到大的一组数据-2,1,2,,6,10的中位数为2,则这组数据的众数是___________.【答案】2【分析】先利用中位数的定义求出的值,再根据众数的定义即可求出这组数据的众数.【详解】解:∵从小到大的一组数据-2,1,2,,6,10的中位数为2,∴,2出现的次数最多,故这组数据的众数是2,故答案为:2.【点睛】本题主要考查了众数,中位数,解题的关键是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(2022·江苏·九年级专题练习)一组数据﹣1,3,1,2,b的唯一众数为﹣1,则这组数据的中位数为__.【答案】1【分析】根据众数和中位数的概念求解.【详解】解:∵数据-1、3、1、2、b的众数为-1,∴b=-1,则数据重新排列为-1、-1、1、2、3,所以中位数为1,故答案为1.【点睛】本题考查了众数和中位数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.题型4平均数、众数、中位数的综合运算1.(2022·黑龙江牡丹江·八年级期末)一组数据为1,3,2,2,a,b,c,唯一众数是3,平均数是2,则这组数据的中位数是_______.【答案】2【分析】根据唯一众数是3,可得a,b,c三个数中,有2个数均为3,再由平均数是2,可求出c=0,即可求解.【详解】解:∵唯一众数是3,∴a,b,c三个数中,有2个数均为3,不妨设a=3,b=3,∵平均数是2,∴(1+3+2+2+3+3+c)÷7=2,解得:c=0,∴把这一组数从小到大排列为0,1,2,2,3,3,3,位于第4位的数为2,∴这组数据的中位数是2.故答案为:2【点睛】本题主要考查了众数,平均数的意义,求中位数,根据题意得到a,b,c三个数中,有2个数均为3是解题的关键.2.(2022·广东湛江·八年级期末)两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的众数为________.【答案】8【分析】根据平均数的意义,求出a、b的值,进而确定两组数据,再合并成一组,找出出现次数最多的数据即可.【详解】解:由题意得,,解得,这两组数合并成一组新数据为:,在这组新数据中,出现次数最多的是8,因此众数是8,故答案为:8.【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.3.(2022·江苏·九年级专题练习)五个正整数,中位数是,众数是,则这五个正整数的平均数是______.【答案】或或【分析】首先根据众数与中位数的意义,推出这五个数据,再由平均数的意义得出结果.【详解】解:据题意得,此题有三个数为,,;又因为一组数据由五个正整数组成,所以另两个为,或,或,;所以这五个正整数的平均数是,或,或.故答案为:或或.【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时要注意理解题意,要细心,不要漏解.平均数:是指一组数据中所有数据之和再除以数据的个数;中位数:把一组数据按从小到大的顺序排列,在中间的一个数字(或者两个数字的平均值)叫做这组数据的中位数;众数:在一组数据中出现次数最多的数.4.(2022·湖北黄石·八年级期末)一组2,2x,y,12中,唯一的众数是12,平均数是10,这数据的中位数是_______.【答案】12【分析】先根据数据的平均数为,得出,再根据唯一众数为,得出或,然后按照从小到大排列即可得出答案.【详解】数据,,,的平均数是,,即,数据,,,唯一的众数是,或,即或,当时,,将数据按照从小到大排列如下:,,,,得出中位数为:;当时,,将数据按照从小到大排列如下:,,,,得出中位数为:;故答案:.【点睛】本题考查了平均数、中位数及众数的意义,解题的关键是熟练掌握相关概念并应用求解.5.(2022·福建·厦门八年级期末)已知一组数据由五个正整数组成,它的中位数和众数都是2,则这五个数的和的最小值是(
)A.7 B.8 C.9 D.10【答案】B【分析】根据题意可直接进行求解.【详解】解:由一组数据由五个正整数组成,它的中位数和众数都是2,若要使这五个数的和最小,则这五个数由1和2组成,即为1、1、2、2、2,其和为1+1+2+2+2=8;故选B.【点睛】本题主要考查中位数与众数,熟练掌握中位数与众数是解题的关键.6.(2022·河北保定·九年级期末)某部门为了解工人的生产能力情况,进行了抽样调查,随机抽取了20名工人每天每人加工零件的个数,整理得到如下统计表和条形统计图.统计量平均数众数中位数数值19.2根据以上信息,解答下列问题:(1)分别求,的值;(2)为调动积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让60%左右的工人能获奖,应根据______来确定奖励标准比较合适(填“平均数”、“众数”或“中位数”);(3)该部门规定:每天加工零件的个数达到或超过21个的工人为生产能手,若该部门有300名工人,试估计该部门生产能手的人数.【答案】(1)众数m=18;中位数n=19(2)中位数(3)该部门生产能手为90人【分析】(1)根据众数和中位数的概念计算即可.(2)想让60%左右的工人能获奖意思就是要奖励前60%.(3)先计算这20个人中生产能手所占的百分比,再用300乘以这个百分比即可估计该部门生产能手的人数.(1)由条形统计图知,数据18出现的次数最多,∴众数m=18;中位数是第10、11个数据的平均数,而第10、11个数据都是19.∴中位数n=19;(2)想让60%左右的工人能获奖意思就是要奖励前60%∴应根据中位数来确定奖励标准比较合适故答案为:中位数;(3)若该部门有300名工人,估计该部门生产能手的人数为300×=90(人)【点睛】本题主要考查了平均数,中位数,众数.掌握平均数,中位数,众数的计算方法及样本和总体的关系是解题的关键.题型5方差与标准差的相关计算【解题技巧】1)极差:一组数据中最大值与最小值的差2)方差:在一组数据中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差。通常用“”表示,即3)标准差:方差的算数平方根叫做这组数据的标准差,用“s”表示,即结论:若数据a1,a2,……an的方差是s2,则数据a1+b,a2+b,……an+b的方差仍然是s2,数据ka1+b,ka2+b,……kan+b的方差是k2s2.1.(2022·安徽·合肥二模)某班抽取名同学参加体能测试,成绩如下:,,,,,下列表述错误的是(
)A.平均数是 B.极差是 C.中位数是 D.标准差是【答案】D【分析】根据平均数,中位数,方差,极差的概念逐项分析.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;利用方差公式计算方差,利用平均数和极差的定义可分别求出.【详解】A.由平均数公式求得:,故此选项正确,不符合题意;B.极差是,故此选项正确,不符合题意;C.把数据按大小排列,中间两个数为,,所以中位数是,故此选项正确,不符合题意;D.,故标准差为:,故此选项错误,符合题意.故选:D.【点睛】本题考查了统计学中的平均数,方差,中位数与极差的定义,解答这类题学生常常对中位数的计算方法掌握不好而错选.2.(2022·浙江·宁波市镇海蛟川书院八年级期中)一组数据的方差计算公式为,则这组数据的方差是______.【答案】【分析】根据题意可得平均数,再根据方差的定义可得答案.【详解】解:平均数为:,故方差是:.故答案为:.【点睛】本题主要考查方差,解题的关键是掌握方差及平均数的定义.样本方差,其中n是这个样本的容量,是样本的平均数3.(2022·福建·福州日升中学八年级期中)如果有一组数据-2,0,1,3,的极差是6,那么的值是_________.【答案】4或-3##-3或4【分析】根据极差的定义求解.分两种情况:x为最大值或最小值.【详解】解:∵3-(-2)=5,一组数据-2,0,1,3,x的极差是6,∴当x为最大值时,x-(-2)=6,解得x=4;当x是最小值时,3-x=6,解得:x=-3.故答案为:4或-3.【点睛】此题主要考查了极差的定义,正确理解极差的定义,能够注意到应该分两种情况讨论是解决本题的关键.4.(2022·福建·厦门实验中学二模)设数据x1,x2,x3,…,xn的平均数为x,方差S2=0,则下列式子一定正确的是()A.x=0 B.x1+x2+x3+…+xn=0 C.x1=x2=x3=…=xn=0 D.x1=x2=x3=…=xn=x【答案】D【分析】根据方差的定义,即可得出结论.【详解】解:∵数据x1,x2,x3,…,xn的平均数为x,方差S2=0,∴x1=x2=x3=…=xn=x.故选:D【点睛】本题考查了方差,熟练掌握方差的定义是解本题的关键.方差是各个数据与平均数之差的平方的和的平均数,因此方差一定是大于等于0.5.(2022·山东烟台·八年级期中)若一组数据13,14,15,16,x的方差比另一组数3,4,5,6,7的方差大,则x的值可能是(
)A.12 B.16 C.17 D.18【答案】D【分析】观察两组数据分布特点,根据方差的意义求解,也可先计算出后一组数据的方差,再取一个x的值计算出前一组数据的方差求解.【详解】数据3,4,5,6,7,每2个数相差1;数据13,14,15,16,x的前四个数据也相差1,若x=17或x=12,两组数据方差相等,而数据13,14,15,16,x的方差比另一组数3,4,5,6,7的方差大,则x的值可能是18,故D正确.故选:D.【点睛】本题主要考查方差,解题的关键是掌握方差的定义和方差的意义.6.(2022·江苏·盐城九年级阶段练习)省射击队要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的4次选拔赛中,甲的射击的成绩如下(单位:环):7、8、9、8.(1)求甲运动员这4次选拔赛成绩的平均数;(2)求甲运动员这4次选拔赛成绩的方差.【答案】(1)甲运动员这4次选拔赛成绩的平均数8环;(2)甲运动员这4次选拔赛成绩的方差.【分析】(1)根据平均数计算方法可以解答本题即可;(2)根据平均数计算方法可以解答本题即可.(1)解:∵甲的射击的成绩如下(单位:环):7、8、9、8,∴(环);(2)解:∵(环),甲的射击的成绩如下(单位:环):7、8、9、8,∴.【点睛】本题考查平均数、方差,解答本题的关键是明确平均数和方差的计算方法,熟记算术平均数及方差公式.题型6统计量的选择--众数1.(2022·河北秦皇岛·八年级期末)某幼儿园对全体小朋友爱吃哪种粽子做调查,以决定最终买哪种口味的粽子,下面的调查数据最值得关注的是(
)A.平均数 B.中位数 C.众数 D.方差【答案】C【分析】根据题意,可得:幼儿园调查的目的是得出最喜欢哪种口味的粽子的人数最多,以便决策,再根据众数的意义,即可得出结果.【详解】解:根据题意,可知:幼儿园调查的目的是明确最喜欢哪种口味的粽子的人数最多,∵众数是数据中出现次数最多的数,∴幼儿园最值得关注的是统计数据中的众数.故选:C.【点睛】本题考查了统计的有关知识,主要包括平均数、中位数、众数的意义,反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的应用.2.(2022·浙江衢州·八年级期末)一家鞋店对上周某一品牌的销售情况统计如下表:尺码(厘米)22.52323.52424.5销售量(双)251173该店决定本周进鞋时多进些尺码为23.5厘米的鞋,影响鞋店决策的统计量是(
).A.平均数 B.中位数 C.众数 D.方差【答案】C【分析】根据各个选项的意义进行判断即可得到答案.【详解】观察各个尺码的鞋的销售量知,尺码为23.5厘米的鞋销售量最多,即影响鞋店决策的统计量是众数.故选:C.【点睛】本题考查统计的相关知识,掌握平均数、中位数、众数、方差的意义是关键.3.(2022·浙江杭州·八年级阶段练习)“冰墩墩”热潮持续不断,店家为合理进行资金分配,对上月各类型的爆款数量进行数据统计分析,从而确定各款商品批发数量,此时店家应重点参考(
)A.众数 B.平均数 C.中位数 D.方差【答案】A【分析】在决定在这个月的进货中多进某种型号服装,应考虑各种型号的服装销售数量,选销售量最大的,即参考众数.【详解】解:“冰墩墩”热潮持续不断,店家为合理进行资金分配,对上月各类型的爆款数量进行了数据统计分析,从而确定各款商品批发数量,此时店家应重点参考众数.故选:A.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,解题的关键是对统计量进行合理的选择和恰当的运用.4.(2022·安徽合肥·八年级期末)某品牌运动鞋专卖店在销售过程中,对近期不同尺码的鞋子销售情况进行了统计,若决定下次进货时,增加一些41码的鞋子,影响该决策的统计量是(
).尺码3940414243平均每天销售数量/双1616252420A.平均数 B.中位数 C.众数 D.方差【答案】C【分析】根据销量大的尺码就是这组数据的众数可得答案.【详解】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.5.(2022·河北廊坊·八年级期末)某服装店试销一款女式防晒服,试销期间对不同颜色的防晒服的销售情况做了统计.如果服装店经理最关心的是哪种颜色的防晒服最畅销,那么对经理最有意义的统计量是(
)A.平均数 B.众数 C.中位数 D.方差【答案】B【分析】经理对服装店经理最有意义的是对不同颜色服装的销售数量,即众数.【详解】解:因为服装部经理最关注的是各种颜色防晒服不同的销售量,即众数,故选:B【点睛】此题主要考查统计的有关知识,解题的关键是掌握平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.6.(2022·浙江·八年级期中)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的鞋销售量如下表:尺码/厘米2222.52323.52424.525销售量/双12511731如果你是鞋店的经理,你会最关注哪个统计量(
)A.平均数 B.中位数 C.众数 D.方差【答案】C【分析】根据题意,结合众数的定义,鞋店的经理最关注的应该是最畅销的尺码,即鞋店的经理最关注的统计量是众数.【详解】解∵鞋店的经理最关注的应该是最畅销的尺码,即哪种尺码的鞋子需求量最大,销售量最多,又∵众数是数据中出现次数最多的数,众数能帮助鞋店的经理了解进货时应该进哪种尺码的鞋最多,∴鞋店的经理最关注的统计量是众数.故选:C【点睛】本题主要考查统计量的选择,解题的关键是掌握平均数、中位数、众数及方差的意义.众数是数据中出现次数最多的数;中位数是一组数据按大小顺序排列后,处于中间位置的数(或取中间两数据的平均数).题型7统计量的选择--中位数1.(2022·河北·石家庄九年级阶段练习)在一次15人参加的歌唱比赛中,预赛成绩各不同要取前8名参加决赛杨超越已经知道自己的成绩,她想知道自己是否能进入决赛,只需要再知道这15名选手成绩的(
)A.平均数 B.众数 C.方差 D.中位数【答案】D【分析】15人成绩的中位数是第8名的成绩,杨超越要想知道自己是否能进入决赛,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:共有15名学生参加预赛,取前8名,所以杨超越需要知道自己的成绩是否进入前8,我们把所有同学的成绩按大小顺序排列,第8名的成绩是这组数据的中位数,所以她知道这组数据的中位数,才能知道自己是否进入决赛,故选D.【点睛】本题考查了统计量的选择,熟练掌握中位数的意义是解本题的关键.2.(2022·河南洛阳·八年级期末)在一次数学测试中,小明的成绩是75分,超过本班半数同学的成绩,分析得出这个结论所用的统计量是(
)A.平均数 B.众数 C.中位数 D.方差【答案】C【分析】根据中位数的意义求解可得.【详解】解:班级数学成绩排列后,最中间一个数或最中间两个分式的平均数是这组成绩的中位数,半数同学的成绩位于中位数以下,∴小明成绩超过班级半数同学的成绩所用的统计量是中位数,故选:C.【点睛】此题考查了中位数的意义,熟记中位数的定义是解题的关键.3.(2022·福建·莆田八中八年级期末)为了方便市民出行,打造健康莆田,莆田市政府推出“YouBike微笑自行车”的社会公共服务项目.微笑自行车运营管理公司经过调查获得关于微笑自行车租用骑行时间的数据,并由此制定了收费标准:若每次租用单车骑行a小时以内,则不收取费用;若超过a小时后,超过部分每小时收费1元.为保证不少于50%的骑行是免费的,自行车运营管理公司应从此次调查得到的骑行时间的数据中,选取下列哪个统计了作为a的值(
)A.平均数 B.众数 C.中位数 D.方差【答案】C【分析】根据中位数的意义求解即可.【详解】解:∵要保证不少于50%的骑行是免费的,而中位数是这组数据最中间的数或最中间2个数的平均数∴选取中位数作为a的值最合适,故选:C.【点睛】本题主要考查统计量的选择,解题的关键是掌握中位数的意义.4.(2022·吉林长春·八年级期末)某校11名学生演讲赛的成绩各不相同,若某选手想知道自己能否进入前5名,则他不仅要知道自己的成绩,还应知道这11名学生成绩的(
)A.平均数 B.众数 C.方差 D.中位数【答案】D【分析】11人成绩的中位数是第6名的成绩,参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有11个人,且他们的分数互不相同,第6名的成绩是中位数,要判断是否进入前5名,故应知道中位数是多少,故D正确.故选:D.【点睛】本题主要考查统计量的选择,解题的关键是明确题意,选取合适的统计量.4.(2022·河南驻马店·八年级期末)杨靖宇将军纪念馆“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分,5个有效评分与7个原始评分相比.这两组数据一定不变的是(
)A.中位数 B.众数 C.平均数 D.以上都不对【答案】A【分析】根据题意“从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分,5个有效评分与7个原始评分相比”和中位数的定义:“按顺序排列的一组数据中居于中间位置的数.”可知,7个原始评分和5个有效评分中最中间的数不发生变化,所以一定不变的是中位数.【详解】根据题意和中位数定义可知,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分,5个有效评分与7个原始评分相比,最中间的数一定不变,即中位数一定不变.故选:A【点睛】本题考查数据的整理:平均数、中位数、众数等知识点.理解平均数、中位数、众数的定义特征是解本题的关键.平均数:在一组数据中所有数据之和再除以这组数据的个数.中位数:按顺序排列的一组数据中居于中间位置的数.众数:在一组数据中,出现次数最多的数.5.(2022·贵州黔东南·八年级期末)某装配车间为了较合理地确定每名工人标准目产量,车间管理者从过去的工作日中随机地抽查了该车间15名工人在某一天中各自装配机器的数量(单位:台),具体如下:6,7,7,8,8,8,8,9,10,10,11,13,15,15,16.根据抽样的数据,车间管理者将每名工人标准日产量定为9台,其依据是统计数据中的(
)A.最大数据 B.众数 C.中位数 D.平均数【答案】C【分析】根据中位数的意义即可得出答案.【详解】解:由抽样数据可知,其中位数是排序后第8个数据,即9,且最大数据、众数、平均数都不是9,∴车间管理者将每名工人标准日产量定为9台,其依据是统计数据中的中位数,故选:C.【点睛】此题考查了中位数、众数、平均数及运用中位数作决策,熟练掌握中位数、众数、平均数的求法是解题的关键.6.(2022·河南洛阳·九年级)某停车场规定,停车时间在小时以内收费元,超过小时的,每小时另收元,若要让在该停车场停车的的人只花元钱,应取(
)A.平均数 B.众数 C.中位数 D.方差【答案】C【分析】根据中位数的定义,其值总是将所有数据按从小到大依次排列后,处于最中间的那个数(或中间两个数的平均数),做出判断即可.【详解】解:∵要让在该停车场停车的的人只花元钱,∴a取中位数时才能满足条件,故选:C.【点睛】本题考查了数据分析和中位数的定义,掌握知识点是解题关键.题型8统计量的选择--方差【解题技巧】极差反映了一组数据中极端值的变化。当极差越小,则数据越稳定;极差越大,则数据极端数值波动越大。方差(标准差)反映整体数据波动情况;方差(标准差)越小,整体数据越稳定。1.(2022·浙江·永嘉县八年级期中)如表记录了甲、乙、丙、丁四名学生近10次英语词汇成绩的数据信息,要选择一名成绩好又发挥稳定的学生参加年级英语词汇比赛,应该选择的是()甲乙丙丁平均数(分)90939392方差()1.58.51.55.5A.甲 B.乙 C.丙 D.丁【答案】C【分析】成绩好,需要考查平均分;发挥稳定,需要考查方差.【详解】∵乙和丙的平均数最高,乙和丙的方差分别为8.5和1.5∴丙的成绩好又发挥稳定.故答案为:C.【点睛】本题考查平均数和方差,需要注意,方差越小,则这组数据越稳定,理解方差衡量数据的稳定性时,方差越小,越稳定是解题的关键.2.(2022·福建·福州九年级阶段练习)八年级一班的平均年龄是12.5岁,方差是40,过一年后该班学生到九年级时,下列说法正确的是(
)A.平均年龄不变 B.年龄的方差不变 C.年龄的众数不变 D.年龄的中位数不变【答案】B【分析】根据题意求出一年后该班学生的平均年龄和方差,结合选项得到答案.【详解】解:过一年后该班学生到九年级时,平均年龄是13.5岁,方差是40,年龄的众数,年龄的中位数都比原来多1,故选:B.【点睛】本题考查的是平均数、方差的知识,掌握当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变是解题的关键.3.(2021·浙江湖州市·九年级一模)已知某运动队的甲、乙、丙、丁四名射击运动员平时训练的平均成绩(单位:环)以及方差(单位:环)如下表,现要选一名成绩优秀且稳定的队员参加某项比赛,则应选()甲乙丙丁9.09.09.59.50.52.21.70.5A.甲 B.乙 C.丙 D.丁【答案】D【分析】方差越小越稳定,据此解题.【详解】解:又丁的成绩优秀且最稳定,故选:D.【点睛】本题考查方差的应用,涉及平均数等知识,是基础考点,难度较易,掌握相关知识是解题关键.4.(2021·浙江宁波市·九年级二模)一组数据1,2,3,4,5的方差是a,若增加一个数据9,则增加后6个数据的方差为b,则a与b的大小关系是()A.a<b B.a=b C.a>b D.不能确定【答案】A【分析】根据平均数的计算公式先计算出各组数据的平均数,再根据方差公式求出各组数据的方差,然后进行比较即可.【详解】解:数据1,2,3,4,5的平均数是:,方差:,数据1,2,3,4,5,9的平均数是:,方差:,则;故选:A.【点睛】本题考查了方差,一般地设n个数据,x1,x2,…xn的平均数为,则方差为.它反映了一组数据的波动大小,方差越大,波动性越大,反
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学真题练习试卷B卷附答案
- 2024年交通运输设备项目资金需求报告代可行性研究报告
- 一年级数学计算题专项练习1000题汇编
- 2024年个人房产抵押贷款协议范本
- 文书模板-《劳务用工合同》
- 2024年度安置性质房产购买协议典范
- 2024老年专家返聘协议详细条款
- 2024届安徽省皖南八校联盟高三4月(二诊)调研测试卷(康德版)数学试题
- 2024年度建筑资产转让协议样例
- 2024精简型牛肉购销协议文本
- 20以内进位加法100题(精心整理6套-可打印A4)
- 陕西师范大学学位英语试题
- 中小学反恐风险评估报告
- 品牌营销策略和品牌策略
- 视力矫正商业计划书
- 医学课件:临床决策分析
- 幼儿园优质公开课:中班音乐韵律《打喷嚏的小老鼠》课件
- 质量管理体系品质保证体系图
- 人教版(新插图)三年级上册数学 第9课时 用乘除两步计算 解决-归总问题 教学课件
- 《现代汉语》考试复习题库及答案
- 13J104《蒸压加气混凝土砌块、板材构造》
评论
0/150
提交评论