天津市和平区汇文中学2022-2023学年八年级数学第一学期期末调研试题含解析_第1页
天津市和平区汇文中学2022-2023学年八年级数学第一学期期末调研试题含解析_第2页
天津市和平区汇文中学2022-2023学年八年级数学第一学期期末调研试题含解析_第3页
天津市和平区汇文中学2022-2023学年八年级数学第一学期期末调研试题含解析_第4页
天津市和平区汇文中学2022-2023学年八年级数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.实数a,b在数轴上的位置如图所示,下列结论错误的是()A.|a|<1<|b| B.1<–a<b C.1<|a|<b D.–b<a<–12.下列关于的叙述错误的是()A.是无理数 B.C.数轴上不存在表示的点 D.面积为的正方形的边长是3.如图所示,有一个长、宽各2米,高为3米且封闭的长方体纸盒,一只昆虫从顶点A要爬到顶点B,那么这只昆虫爬行的最短路程为()A.3米 B.4米 C.5米 D.6米4.若,则的结果是()A.7 B.9 C.﹣9 D.115.为迎接我市创建全国文明城市活动,环卫处投资20万元购买并投放一批型“垃圾清扫车”,因为清扫车需求量增加,计划继续投放型清扫车,型清扫车的投放数量与型清扫车的投放数量相同,投资总费用减少,购买型清扫车的单价比购买型清扫车的单价少50元,则型清扫车每辆车的价格是多少元?设型清扫车每辆车的价格为元,根据题意,列方程正确的是()A. B.C. D.6.已知等腰三角形的周长为17cm,一边长为5cm,则它的腰长为()A.5cm B.6cm C.5.5cm或5cm D.5cm或6cm7.如图,在,中,,,,点,,三点在同一条直线上,连结,则下列结论中错误的是()A. B.C. D.8.下列各组条件中,能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F9.如果点P(-2,b)和点Q(a,-3)关于x轴对称,则的值是()A.1 B.-1 C.5 D.-510.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+311.如图,在等边△ABC中,BD=CE,将线段AE沿AC翻折,得到线段AM,连结EM交AC于点N,连结DM、CM以下说法:①AD=AM,②∠MCA=60°,③CM=2CN,④MA=DM中,正确的有()A.1个 B.2个 C.3个 D.4个12.下列从左到右的变形是分解因式的是()A. B.C. D.二、填空题(每题4分,共24分)13.当m=____时,关于x的分式方程无解.14.解方程:.15.已知等腰三角形的底角是15°,腰长为8cm,则三角形的面积是_______.16.如图,在△ABC中,AB=AC=5,BC=6,AD是∠BAC的平分线,AD=1.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是_____.17.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.18.如图,等腰△ABC,CA=CB,△A'BC'≌△ABC,∠A'=75°,∠A'BA=β,则∠ACC'的度数为_____.(用含β的式子表示)三、解答题(共78分)19.(8分)如图,以点为圆心,以相同的长为半径作弧,分别与射线交于两点,连接,再分别以为圆心,以相同长(大于)为半径作弧,两弧相交于点,连接.若,求的度数.20.(8分)观察下列各式:,,,….(1)____________;(2)用含有(为正整数)的等式表示出来,并加以证明;(3)利用上面得到的规律,写出是哪个数的平方数.21.(8分)已知:如图,AB=BC,∠A=∠C.求证:AD=CD.22.(10分)在日历上,我们可以发现其中某些数满足一定的规律,如图是2020年1月份的日历.如图所选择的两组四个数,分别将每组数中相对的两数相乘,再相减,例如:9×11﹣3×17=,12×14﹣6×20=,不难发现,结果都是.(1)请将上面三个空补充完整;(2)请你利用整式的运算对以上规律进行证明.23.(10分)图书室要对一批图书进行整理工作,张明用3小时整理完了这批图书的一半后,李强加入了整理另一半图书的工作,两人合作1.2小时后整理完成那么李强单独整理这批图书需要几小时?24.(10分)如图,在中,,,是中点,.求证:(1);(2)是等腰直角三角形.25.(12分)已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置,并求△ABC的面积;(2)在平面直角坐标系中画出△A′B′C′,使它与△ABC关于x轴对称,并写出△A′B′C′三顶点的坐标;(3)若M(x,y)是△ABC内部任意一点,请直接写出这点在△A′B′C′内部的对应点M′的坐标.26.如图,直线:交轴于点,直线交轴于点,与的交点的横坐标为1,连结.(1)求直线的函数表达式;(2)求的面积.

参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:由图可知:故A项错误,C项正确;故B、D项正确.故选A.考点:1、有理数大小比较;2、数轴.2、C【分析】根据无理数的定义、实数比较大小、实数与数轴的关系和正方形的面积公式逐一判断即可.【详解】解:A.是无理数,故本选项不符合题意;B.,故本选项不符合题意;C.数轴上存在表示的点,故本选项符合题意;D.面积为的正方形的边长是,故本选项不符合题意.故选C.【点睛】此题考查的是实数的相关性质,掌握无理数的定义、实数比较大小、实数与数轴的关系和正方形的面积公式是解决此题的关键.3、C【解析】解:由题意得,路径一:;路径二:;路径三:为最短路径,故选C.4、D【分析】根据完全平方的特征对式子进行整理,即(a-)2+2,最后整体代入进行计算可得结果.【详解】解:∵,∴=(a﹣)2+2=(﹣3)2+2=9+2=11,故选:D.【点睛】本题主要考查了代数式的求值,解题的关键是掌握完全平方公式.5、C【分析】设B型清扫车每辆车的价格为元,则A型清扫车每辆车的价格为(x+50)元,依据“型清扫车的投放数量与型清扫车的投放数量相同,”列出关于x的方程,即可得到答案.【详解】解:设B型清扫车每辆车的价格为元,则A型清扫车每辆车的价格为(x+50)元,根据题意,得:;故选:C.【点睛】考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.6、D【分析】分为两种情况:5cm是等腰三角形的底边或5cm是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析能否构成三角形.【详解】解:当5cm是等腰三角形的底边时,则其腰长是(17-5)÷2=6(cm),能够组成三角形;

当5cm是等腰三角形的腰时,则其底边是17-5×2=7(cm),能够组成三角形.

故该等腰三角形的腰长为:6cm或5cm.

故选:D.【点睛】本题考查了等腰三角形的两腰相等的性质,三角形的三边关系,熟练掌握等腰三角形的性质是解题的关键.7、C【分析】根据题意,通过三角形的全等性质及判定定理,角的和差,勾股定理进行逐一判断即可得解.【详解】A.∵,∴,即,∵在和中,,∴,∴,故A选项正确;B.∵,∴,∴,则,故B选项正确;C.∵,∴只有当时,才成立,故C选项错误;D.∵为等腰直角三角形,∴,∴,∵,∴,∴,故D选项正确,故选:C.【点睛】本题主要考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.8、C【分析】根据全等三角形的判定方法,对每个选项逐一判断即可得出答案.【详解】A.两条边对应相等,且两条边的夹角也对应相等的两个三角形全等,即当AB=DE,BC=EF时,两条边的夹角应为∠B=∠E,故A选项不能判定△ABC≌△DEF;B.两个角对应相等,且两个角夹的边也对应相等的两个三角形全等,即当∠A=∠D,∠C=∠F时,两个角夹的边应为AC=DF,故B选项不能判定△ABC≌△DEF;.C.由AB=DE,BC=EF,△ABC的周长=△DEF的周长,可知AC=DF,即三边对应相等的两个三角形全等,故C选项能判定△ABC≌△DEF;.D.三角对应相等的两个三角形不一定全等,故D选项不能判定△ABC≌△DEF.故选C.【点睛】本题考查了全等三角形的判定方法.熟练掌握全等三角形的判定方法是解题的关键.9、A【分析】关于x轴对称,则P、Q横坐标相同,纵坐标互为相反数,即可求解.【详解】∵点P(-2,b)和点Q(a,-3)关于x轴对称∴a=-2,b=3∴故选A.【点睛】本题考查坐标系中点的对称,熟记口诀“关于谁对称谁不变,另一个变号”是关键.10、D【解析】试题分析:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵过点A的一次函数的图象过点A(0,1),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=﹣x+1.故选D.考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题.11、D【解析】由△ABD≌△ACE,△AEC≌△AMC,△ABC是等边三角形可以对①②进行判断,由AC垂直平分EM和直角三角形的性质可对③进行判断,由△ADM是等边三角形,可对④进行判断.【详解】∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=∠ACB=60°,∵BD=CE,∴△ABD≌△ACE,∴AD=AE,∠BAD=∠EAC,∵△AEC沿AC翻折得到△AMC,∴△AEC≌△AMC,∴AE=AM,∠ECA=∠MCA,∴AD=AM,∠MCA=60°,故①②正确,∵△AEC沿AC翻折得到△AMC,∴AE=AM,EC=CM,∴点A、C在EM的垂直平分线上,∴AC垂直平分EM,∴∠ENC=90°,∵∠MCA=60°,∴∠NMC=30°,∴CM=2CN,故③正确,∵∠BAD=∠EAC,∠ECA=∠MCA,∴∠BAD=∠MCA,∵∠BAD+∠DAC=60°,∴∠DAC+∠CAM=60°,即∠DAM=60°,又AD=AM,∴△ADM是等边三角形,∴MA=DM,故④正确,综上所述,这四句话都正确,故选D.【点睛】此题考查了全等三角形的判定和性质、等边三角形的判定和性质、直角三角形的性质、线段垂直平分线的判定与性质、轴对称的性质等知识.12、C【分析】考查因式分解的概念:把一个多项式分解成几个整式的积的形式.【详解】解:A.正确分解为:,所以错误;B.因式分解后为积的形式,所以错误;C.正确;D.等式左边就不是多项式,所以错误.【点睛】多项式分解后一定是几个整式相乘的形式,才能叫因式分解二、填空题(每题4分,共24分)13、-6【解析】把原方程去分母得,2x+m=-(x-3)①,把x=3代入方程①得,m=-6,故答案为-6.14、方程无解【分析】先去分母得到整式方程,再解所得的整式方程即可,注意解分式方程最后要写检验.【详解】解:去分母得解得经检验是原方程的增根∴原方程无解.考点:解分式方程点评:解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.15、16cm1【分析】根据题意作出图形,求出腰上的高,再代入面积公式即可求解.【详解】解:如图,∵∠B=∠ACB=15°,

∴∠CAD=30°,∵AB=AC=8,

∴CD=AC=×8=4,

∴三角形的面积=×8×4=16cm1,

故答案为:16cm1.【点睛】本题考查的是直角三角形的性质、等腰三角形的性质以及外角的运用,等腰三角形中等边对等角、外角等于和它不相邻的两内角的和是解题的关键.16、【分析】由等腰三角形的三线合一可得出AD垂直平分BC,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,在△ABC中,利用面积法可求出BQ的长度,此题得解.【详解】∵AB=AC,AD是∠BAC的平分线,∴AD垂直平分BC,∴BP=CP.如图,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,∵S△ABC=BC•AD=AC•BQ,∴BQ==,即PC+PQ的最小值是.故答案为.【点睛】本题考查了轴对称﹣最短路线问题、等腰三角形的性质以及三角形的面积,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.17、1【解析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6,∴这组数据的中位数为=1,故答案为:1.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.18、60°β.【分析】根据全等三角形的性质得到∠A=∠A'=75°,BC'=BC,∠A'BC'=∠ABC,根据等腰三角形的性质、三角形内角和定理分别求出∠BCC'、∠ACB,结合图形计算即可.【详解】解:∵△A'BC'≌△ABC,∴∠A=∠A'=75°,BC'=BC,∠A'BC'=∠ABC,∴∠C'BC=∠A'BA=β.∵BC'=BC,∴∠BCC',∵CA=CB,∴∠ACB=180°﹣75°×2=30°,∴∠ACC'=∠BCC'﹣∠ACB=60°β.故答案为:60°β.【点睛】本题考查了全等三角形的性质、等腰三角形的性质、三角形内角和定理,掌握全等三角形的对应边相等、对应角相等是解题的关键.三、解答题(共78分)19、∠MBD=40°【分析】由等腰三角形的性质得到∠ABC=∠ACB,∠DBC=∠DCB,则∠ABD=∠ACD,再根据邻补角即可得到∠MBD=∠NCD.【详解】由题意可知AB=AC,DB=DC∴∠ABC=∠ACB,∠DBC=∠DCB∴∠ABC+∠DBC=∠ACB+∠DCB,即∠ABD=∠ACD∴180°-∠ABD=180°-∠ACD,即∠MBD=∠NCD∴∠MBD=40°【点睛】本题考查了等腰三角形的性质,根据作图描述得到AB=AC,DB=DC是解题的关键.20、(1);(2)或,理由见解析;(3)【分析】(1)根据规律为(2)根据规律为(3)【详解】解:(1).故答案为:;(2)或.理由如下:.(3).【点睛】本题考查了数字的规律,根据给出的式子找到规律是解题的关键.21、见解析【分析】连接AC,根据等边对等角得到∠BAC=∠BCA,因为∠A=∠C,则可以得到∠CAD=∠ACD,根据等角对等边可得到AD=DC.【详解】连接AC,∵AB=BC,∴∠BAC=∠BCA.∵∠BAD=∠BCD,∴∠CAD=∠ACD.∴AD=CD.【点睛】此题主要考查等腰三角形的性质,熟练掌握,即可解题.22、(1)1,1,1;(2)证明见解析.【分析】(1)直接利用已知数据计算求出即可;(2)设四个数围起来的中间的数为x,则四个数依次为x﹣7,x﹣1,x+1,x+7,列式计算即可得出结论.【详解】(1)9×11﹣3×17=1,12×14﹣6×20=1,不难发现,结果都是:1.故答案为:1,1,1.(2)设四个数围起来的中间的数为x,则四个数依次为x﹣7,x﹣1,x+1,x+7则(x﹣1)·(x+1)﹣(x﹣7)·(x+7)===1.【点睛】本题考查了整式的混合运算,正确发现数字之间的变化规律是解答本题的关键.23、4【分析】设李强单独清点这批图书需要的时间是x小时,由题意可得:“张明3小时清点完一批图书的一半”和“两人合作1.2小时清点完另一半图书”列出方程,解方程即可求解.【详解】设李强单独清点这批图书需要x小时,根据题意,得:,解得x=4,经检验x=4是原方程的根.所以李强单独清点这批图书需要4小时.

答:李强单独清点这批图书需要4小时.【点睛】考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.24、(1)见解析;(2)见解析【分析】(1)连接AD,证明△BFD≌△AED即可得出DE=DF;(2)根据三线合一性质可知AD⊥BC,由△BFD≌△AED可知∠BDF=∠ADE,根据等量代换可知∠EDF=90°,可证△DEF为等腰直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论