版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省十堰市2024-2025学年高二数学上学期期末试题本试卷共4页,22题,均为必考题.全卷满分150分.考试用时120分钟.★祝考试顺当★留意事项:1.答题前,考生务必将自己的姓名、考号填写在答题卡和试卷指定位置上,并将考号条形码贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷、草稿纸上无效.3.非选择题用0.5毫米黑色墨水签字笔将答案干脆答在答题卡上对应的答题区域内.答在试题卷、草稿纸上无效.4.考生必需保持答题卡的整齐.考试结束后,只交答题卡.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知数列,则该数列的第100项为()A.99 B. C. D.111【答案】B【解析】【分析】由题知,进而依据通项公式求解即可.【详解】解:由题知,该数列的通项公式为,所以.故选:B2.已知直线与直线,若,则()A. B.2 C.2或 D.5【答案】A【解析】【分析】解方程,再检验即得解.【详解】解:若,则,所以或.当时,重合,不符合题意,所以舍去;当时,符合题意.故选:A3.如图,在四面体中,E是的中点,,设,则()A. B.C. D.【答案】B【解析】【分析】利用空间向量的线性运算法则即可得解.【详解】因为,所以,因为E是的中点,所以,所以故选:B.4.在x,y轴上的截距分别为,3的直线l被圆截得的弦长为()A. B. C. D.【答案】C【解析】【分析】先求出直线方程,再依据几何法得出弦长.【详解】由题意可知直线l的方程为,即.因为圆C的圆心为,半径为4,所以圆心到直线l的距离,故直线l被圆C截得的弦长为.故选:C5.某校进行定点投篮训练,甲、乙、丙三个同学在固定的位置投篮,投中的概率分别,已知每个人投篮互不影响,若这三个同学各投篮一次,至少有一人投中的概率为,则()A. B. C. D.【答案】D【解析】【分析】由对立事务和相互独立事务的概率乘法公式计算可得答案.【详解】由题意可知,解得.故选:D.6.过直线上一点P向圆作切线,切点为Q,则的最小值为()A. B. C. D.【答案】A【解析】【分析】求出圆C的半径和圆心,由勾股定理可得,当时最小,再由点到直线的距离公式可得答案.【详解】因为圆C的半径为,所以,当时,最小,因为圆C的圆心为,所以,所以的最小值为.故选:A.7.在欧几里得生活的时期,人们就发觉了椭圆有如下的光学性质:由椭圆一焦点射出的光线经椭圆内壁反射后必经过另焦点我有一椭圆,从一个焦点发出的一条光线经椭圆内壁上一点反射后经过另一个焦点,若,且,则椭圆的离心率为()A. B. C. D.【答案】D【解析】【分析】依据椭圆的定义得,,进而结合余弦定理得,再求离心率即可.【详解】解:由椭圆的定义得:,因为,所以.所以,在中,由余弦定理得,所以,整理得,所以,.故选:D8.一小孩玩抛硬币跳格子嬉戏,规则如下:抛一枚硬币,若正面朝上,往前跳两格,若反面朝上,往前跳一格.记跳到第格可能有种状况,的前项和为,则()A.56 B.68 C.87 D.95【答案】C【解析】【分析】依据嬉戏规则分别分析求出,然后相加即可.【详解】记正面朝上为,反面朝上记为,则由题意得:当跳到第1格时,只有,故只有1种状况,所以;当跳到第2格时,有,故有2种状况,所以;当跳到第3格时,有,故有3种状况,所以;当跳到第4格时,有,故有5种状况,所以;当跳到第5格时,有,故有8种状况,所以;当跳到第6格时,有,故有13种状况,所以;由此规律得,所以当跳到第7格时,,当跳到第8格时,,所以,故选:C.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知双曲线,则()A.C的一个顶点坐标为 B.C的实轴长为8C.C的焦距为 D.C的离心率为【答案】BD【解析】【分析】依据双曲线方程可得可得答案.【详解】因为,所以,因为焦点在y轴上,所以C的顶点坐标为,实轴长为8,离心率为,焦距为,所以BD正确.故选;BD.10.连续两次抛掷一枚质地匀称的骰子,视察这两次骰子出现的点数.记事务A为“第一次骰子出现的点数为3”,事务B为“其次次骰子出现的点数为5”,事务C为“两次点数之和为8”,事务D为“两次点数之和为7”,则()A.A与B相互独立 B.A与D相互独立C.B与C为互斥事务 D.C与D为互斥事务【答案】ABD【解析】【分析】先求出,再利用公式推断选项AB,利用概念推断选项CD得解.【详解】连续两次抛掷一枚质地匀称的骰子的结果用有序数对表示,其中第一次在前,其次次在后,不同结果如下:.共36个.依题意,,事务C包括,共5个,,事务D包括,共6个,.对于选项A,事务只有结果,A与B相互独立,所以选项A正确;对于选项B,事务只有结果,A与D相互独立,所以选项B正确;对于选项C,当第一次的点数是3点,其次次是5点时,两个事务同时发生了,所以事务不是互斥事务,所以选项C不正确;对于选项D,事务不行能事务,即C与D是互斥事务,所以选项D正确.故选:ABD11.如图,平行六面体的体积为,,,,且,M,N,P分别为的中点,则()A.与夹角的余弦值为B.平面C.D.P到平面的距离为【答案】AD【解析】【分析】先求出底面积,再依据棱柱的体积求出高,依题意可得在底面的投影在上,设出投影O,证明投影O为的中点,即可以O为坐标原点,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,利用空间向量对选项一一验证即可.【详解】因为,且,所以四边形的面积为.因为平行六面体的体积为,所以平行六面体的高为.因为,所以在底面的投影在上.设在底面的投影为O,则,因为,所以.因为,所以O为的中点.以O为坐标原点,的方向分别为x,y,z轴的正方向,建立如图所示的空间直角坐标系,则,,,,,,,.则,,,,,,,.因为,所以与夹角的余弦值为,故A正确.设平面的法向量为,则,令,则.因为,所以与平面不平行,故B错误.因为,所以与不垂直,故C错误.设平面的法向量为,则,令,得.因为,所以P到平面的距离为,故D正确.综上所述:选项AD正确,故选:AD.12.若直线l与抛物线有且仅有一个公共点,且l与C的对称轴不平行,则称直线l与抛物线C相切,公共点P称为切点,且抛物线C在点P处的切线方程为.已知抛物线上有两点.过点A,B分别作抛物线C的两条切线,直线交于点,过抛物线C上异于A,B的一点的切线分别与交于点M,N,则()A.直线的方程为 B.点A,Q,B的横坐标成等差数列C. D.【答案】ACD【解析】【分析】依据已知得,结合抛物线上点的坐标关系,可推断A,B选项;依据直线方程与抛物线方程,列方程组,解出坐标,依据向量的坐标运算,可推断C,D选项;【详解】解:已知抛物线,则,抛物线上两点,过点A,B分别作抛物线C的两条切线,直线交于点,则,则由题意可知:,对于A,联立,当时,,此时直线方程为,符合,当,直线的斜率,所以直线的方程为:,因为在直线上,所以,所以直线的方程为,故A正确;对于B,因为在抛物线上,所以,则或,由A得,则或,点A,Q,B的横坐标不成等差数列,故B不正确;对于C,由A,B可得,即,点是抛物线上一点,所以,联立,同理可得所以,,,所以,故C正确;对于D,由C得,,,所以,故D正确.故选:ACD.三、填空题:本题共4小题,每小题5分,共20分.13.甲、乙两人约定进行乒乓球竞赛,实行三局两胜制(在三局竞赛中,优先取得两局成功的一方获胜,无平局),乙每局竞赛获胜的概率都为,则最终甲获胜的概率是______________.【答案】【解析】【分析】推断甲获胜的状况为前两局胜或第一局胜其次局输第三局胜或第一局输其次局胜第三局胜,依据互斥事务的概率加法公式即可求得答案.【详解】因为乒乓球竞赛的规则是三局两胜制(无平局),由题意知甲每局竞赛获胜的概率都为,因此甲获胜的状况为前两局胜或第一局胜其次局输第三局胜或第一局输其次局胜第三局胜,所以最终甲获胜的概率,故答案为:14.已知两圆与外离,则整数m的一个取值可以是_____________.【答案】(答案不唯一,只需从中写一个答案即可)【解析】【分析】求出两个圆的圆心和半径,得到圆心距,利用位置关系列不等式即可【详解】因为圆的圆心为,圆的圆心为,所以两圆圆心的距离为.因为圆的半径为,圆的半径为,所以,所以,故整数m的取值可能是.故答案为:(答案不唯一,只需从中写一个答案即可)15.“杨辉三角”是中国古代重要的数学成就.如图,这是由“杨辉三角”拓展而成的三角形数阵,记为图中虚线上的数1,3,6,10,…构成的数列的第n项,则___________.【答案】5050【解析】【分析】由结合累加法得出,再由求和公式得出.【详解】因为数列的递推公式为,所以,所以,故.故答案为:16.如图所示,在几何体中,,平面,则点E到直线的距离为_________、直线与平面所成角的正弦值为_______________.【答案】①.②.【解析】【分析】建立坐标系,利用向量法求解即可.【详解】以A为原点,的方向分别为x,y,z轴的正方向建立空间直角坐标系,则..因为,所以,所以点E到直线的距离为.记平面法向量为,则令,得.因为,所以直线与平面所成角的正弦值为.故答案为:;四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列的前n项和为,且.(1)求的通项公式;(2)设,求数列的前n项和.【答案】(1)(2)【解析】【分析】(1)依据求解即可;(2)由题知,进而依据裂项求和法求解即可.【小问1详解】解:当时,.当时,,所以,因为也满意,所以通项公式为.【小问2详解】解:由(1)得,所以,所以.18.某两个班的100名学生期中考试语文成果的频率分布直方图如图所示,其中成果分组区间是.(1)求语文成果在内的学生人数.(2)假如将频率视为概率,依据频率分布直方图,估计语文成果不低于112分的概率.(3)若语文成果在内的学生中有2名女生,其余为男生.现从语文成果在内的学生中随机抽取2人背诵课文,求抽到的是1名男生和1名女生的概率.【答案】(1)5(2)0.21(3).【解析】【分析】(1)利用频率分布直方图中,频率和为求出,即可求出语文成果在内的学生人数;(2)干脆利用频率分布直方图求概率;(3)利用古典概型的概率公式干脆求解.【小问1详解】由频率分布直方图,知,解得,语文成果在内的学生人数为.【小问2详解】由频率分布直方图,知语文成果不低于112分的概率.【小问3详解】由频率分布直方图,知语文成果在内的学生有人,其中女生2名,男生3名,分别记2名女生为A,B,3名男生为a,b,c.样本空间为,其中抽到1名男生和1名女生的状况有,所以抽到的是1名男生和1名女生的概率为.19.已知圆经过点,,且圆心在直线上.(1)求圆的方程;(2)若平面上有两个点,,点是圆上的点且满意,求点的坐标.【答案】(1)(2)或【解析】【分析】(1)设出圆心,利用点到直线的距离公式即可求得圆的方程.(2)依据已知条件求得满意的方程联马上可求得的坐标.【小问1详解】∵圆心在直线上,设圆心,已知圆经过点,,则由,得解得,所以圆心为,半径,所以圆的方程为;【小问2详解】设,∵在圆上,∴,又,,由可得:,化简得,联立解得或.20.如图,在四棱锥中,是边长为2的菱形,且,,,E,F分别是的中点.(1)证明:平面平面.(2)求二面角的大小.【答案】(1)证明见解析(2)【解析】【分析】(1)取AD的中点G,连接PG、BG、BD,由线线垂直证平面PGB,即可依次证,,平面DEF,平面平面(2)于G,建立空间直角坐标系如图所示,由向量法求二面角即可.【小问1详解】证明:取AD的中点G,连接PG、BG、BD,由E,F分别是的中点得,由是边长为2的菱形,且得、为正三角形,∴,,,∴,,由得,又平面PGB,∴平面PGB,∵平面PGB,∴,∴,∵平面DEF,∴平面DEF,∵平面PAD,∴平面平面.【小问2详解】作于G,交于H,∵平面PGB,则可建立空间直角坐标系如图所示.在中,,由余弦定理得,∴,,∴.故,设平面、平面的法向量分别为,则有,令,则有,故二面角的余弦值,由图可知,二面角所成平面角为钝角,∴二面角的大小为.21.已知椭圆的左、右焦点分别为,椭圆与x轴正半轴的交点为A,与y轴正半轴的交点为B,M在C上,垂直于x轴,O为坐标原点,且,.(1)求椭圆C的标准方程.(2)过的直线l与椭圆C交于P,Q两点,当直线l的斜率存在时,试推断x轴上是否存在一点T,使得.若存在,求出T点的坐标;若不存在,请说明理由.【答案】(1)(2)存在,【解析】【分析】(1)由,结合,得出椭圆C标准方程.(2)联立直线和椭圆方程,利用韦达定理结合求解即可.【小问1详解】由题意可知点M的坐标为,因为,所以,即,得.因,所以.因为,所以,故椭圆C的标准方程为.【小问2详解】假设x轴上存在点,使得,则.设直线l的方程为,联立方程组消去x整理得,则,,即.由,解得,故存在,使得.【点睛】关键点睛:解决问题二时,关键在于将转化为,从而将几何问题转化为代数问题,结合韦达定理进行求解.22.已知双曲线的右焦点为,渐近线方程为.(1)求双曲线C的标准方程;(2)设D为双曲线C的右顶点,直线l与双曲线C交于不同于D的E,F两点,若以为直径的圆经过点D,且于点G,证明:存在定点H,使为定值.【答案】(1)(2)证明见解析.【解析】【分析】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学通关提分题库及完整答案
- 2024年度年福建省高校教师资格证之高等教育学模拟预测参考题库及答案
- 五年级数学(小数乘法)计算题专项练习及答案汇编
- 2024年化工技术研发人员劳务协议
- 品创业案例分析
- 2024混凝土施工承揽协议样本
- 清明节主题班会课件
- 2024年房屋建筑施工协议样本
- 彩钢建筑租赁协议格式2024年
- 2024民间资金出借协议简明
- 北京市海淀区2024-2025学年高三上学期10月考英语试卷 含解析
- 四川省成都2023-2024学年高二上学期期中物理试题(含答案)
- 中国港口行业投资前景分析及未来发展趋势研究报告(智研咨询发布)
- 广东省广州市天河区2023-2024学年高一上学期11月期中考试化学试题
- 2024-2030年中国泳装(泳装)行业市场发展趋势与前景展望战略分析报告
- 全国教师管理信息系统-业务功能培训(省级培训材料)
- 河北省2024-2025学年高二数学上学期期中11月考试试题
- 广东省动物防疫条件审查场所选址风险评估表
- 小学英语教师专业发展计划6篇
- CATTI汉英词汇手册
- 英语漫话天府新村智慧树知到答案2024年四川工商职业技术学院
评论
0/150
提交评论