版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35° B.45° C.55° D.60°2.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A.0.1 B.0.15C.0.25 D.0.33.下列命题是假命题的是()A.平方根等于本身的实数只有0; B.两直线平行,内错角相等;C.点P(2,-5)到x轴的距离为5; D.数轴上没有点表示π这个无理数.4.实数-2,,,,-中,无理数的个数是:A.2 B.3 C.4 D.55.在分式中,若,都扩大为原来的2倍,则所得分式的值()A.不变 B.是原来的2倍 C.是原来的4倍 D.无法确定6.将100个数据分成①-⑧组,如下表所示:组号①②③④⑤⑥⑦⑧频数4812241873那么第④组的频率为()A.0.24 B.0.26 C.24 D.267.已知多边形的每个内角都是108°,则这个多边形是()A.五边形 B.七边形 C.九边形 D.不能确定8.若是完全平方式,则m的值等于()A.1或5 B.5 C.7 D.7或9.下列各组值中,不是方程的解的是()A. B. C. D.10.将一组数,2,,2,,…,2,按下列方式进行排列:,2,,2,;2,,4,3,2;…若2的位置记为(1,2),2的位置记为(2,1),则这个数的位置记为()A.(5,4) B.(4,4) C.(4,5) D.(3,5)11.下列说法正确的是()A.的平方根是 B.的算术平方根是C.的立方根是 D.是的一个平方根12.如图,D是线段AC、AB的垂直平分线的交点,若,,则的大小是A. B. C. D.二、填空题(每题4分,共24分)13.等腰三角形ABC的顶角为120°,腰长为20,则底边上的高AD的长为_____.14.分解因式:12a2-3b2=____.15.如果方程无解,则m=___________.16.分解因式:3x3y﹣6x2y+3xy=_____.17.如图,中,点在上,点在上,点在的延长线上,且,若,则的度数是________.18.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为_______度.三、解答题(共78分)19.(8分)如图,直线分别与轴,轴交于点,,过点的直线交轴于点.为的中点,为射线上一动点,连结,,过作于点.(1)直接写出点,的坐标:(______,______),(______,______);(2)当为中点时,求的长;(3)当是以为腰的等腰三角形时,求点坐标;(4)当点在线段(不与,重合)上运动时,作关于的对称点,若落在轴上,则的长为_______.20.(8分)(1)如图1,利用直尺规作图,作出的角平分线,交于点.(2)如图2,在(1)的条件下,若,,,求的长.21.(8分)如图,在平面网格中每个小正方形的边长为1.(1)线段CD是线段AB经过怎样的平移后得到的?(2)线段AC是线段BD经过怎样的平移后得到的?22.(10分)如图,已知,D、E分别是△ABC的边AB、AC上的点,DE交BC的延长线于F,∠B=67°,∠ACB=74°,∠AED=48°,求∠F和∠BDF的度数.23.(10分)在中,,射线,点在射线上(不与点重合),连接,过点作的垂线交的延长线于点.(1)如图①,若,且,求的度数;(2)如图②,若,当点在射线上运动时,与之间有怎样的数量关系?请写出你的结论,并加以证明.(3)如图③,在(2)的条件下,连接,设与射线的交点为,,,当点在射线上运动时,与之间有怎样的数量关系?请写出你的结论,并加以证明.24.(10分)“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)25.(12分)已知的平方根是,3是的算术平方根,求的立方根.26.如图,已知等腰三角形中,,,点是内一点,且,点是外一点,满足,且平分,求的度数
参考答案一、选择题(每题4分,共48分)1、C【解析】试题分析:根据等腰三角形的三线合一的性质可直接得到AD平分∠BAC,AD⊥BC,因此∠DAC=∠BAD=35°,∠ADC=90°,从而可求得∠C=55°.故选C考点:等腰三角形三线合一2、D【解析】∵根据频率分布直方图知道绘画兴趣小组的频数为12,∴参加绘画兴趣小组的频率是12÷40=0.1.3、D【分析】根据平方根的定义可判断A,根据平行线的性质,可判断B,根据坐标系中,点与坐标轴的距离,可判断C,根据数轴上的点与实数一一对应,可判断D.【详解】A.平方根等于本身的实数只有0,是真命题,不符合题意;B.两直线平行,内错角相等,是真命题,不符合题意;C.点P(2,-5)到x轴的距离为5,是真命题,不符合题意;D.∵数轴上的点与实数一一对应,∴数轴上有点表示π这个无理数,故原命题是假命题,符合题意.故选D.【点睛】本题主要考查真假命题的判断,熟练掌握平方根的定义,平行线的性质,坐标系中点与坐标轴的距离以及数轴上点表示的数,是解题的关键.4、A【分析】实数包括有理数和无理数,而无限不循环小数是无理数【详解】解:给出的数中,,-π是无理数,故选A.考点:无理数的意义.5、A【分析】根据分式的基本性质:分式的分子和分母同时乘以(除以)同一个不为0的整式,分式的值不发生变化.【详解】解:故选:A.【点睛】本题主要考查的是分式的基本性质,掌握分式的基本性质以及正确的运算是解题的关键.6、A【分析】先根据数据总数和表格中的数据,可以计算得到第④组的频数;再根据频率=频数÷总数进行计算.【详解】解:根据表格中的数据,得第④组的频数为100−(4+8+12+1+18+7+3)=1,所以其频率为1÷100=0.1.故选:A.【点睛】本题考查频数、频率的计算方法.用到的知识点:各组的频数之和等于数据总数;频率=频数÷总数.7、A【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】∵多边形的每个内角都是108°,
∴每个外角是180°-108°=72°,
∴这个多边形的边数是360°÷72°=5,
∴这个多边形是五边形,
故选A.【点睛】此题考查多边形的外角与内角,解题关键是掌握多边形的外角与它相邻的内角互补.8、D【分析】根据完全平方公式,首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍.【详解】解:∵多项式是完全平方式,∴,∴解得:m=7或-1故选:D.【点睛】此题主要查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.9、B【分析】将x、y的值分别代入x-2y中,看结果是否等于1,判断x、y的值是否为方程x-2y=1的解.【详解】A项,当,时,,所以是方程的解;B项,当,时,,所以不是方程的解;C项,当,时,,所以是方程的解;D项,当,时,,所以是方程的解,故选B.【点睛】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.10、B【分析】先找出被开方数的规律,然后再求得的位置即可.【详解】解:这组数据可表示为:;;…∵19×2=38,∴为第4行,第4个数字.故选:B.【点睛】此题考查的是数字的变化规律,找出其中的规律是解题的关键.11、D【分析】依据平方根,算数平方根,立方根的性质解答即可.【详解】解:A.25的平方根有两个,是±5,故A错误;B.负数没有平方根,故B错误;C.0.2是0.008的立方根,故C错误;D.是的一个平方根,故D正确.故选D.【点睛】本题主要考查了平方根,算术平方根,立方根的性质.平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根为0;③负数没有平方根.算术平方根的性质:①正数的算数平方根是正数;②0的算数平方根为0;③负数没有算数平方根.立方根的性质:①任何数都有立方根,且都只有一个立方根;②正数的立方根是正数,负数的立方根是负数,0的立方根是0.12、A【解析】利用线段的垂直平分线的性质可以得到相等的线段,进而可以得到相等的角,然后利用题目中的已知条件求解即可.【详解】解:是线段AC、AB的垂直平分线的交点,
,
,,
,,
,
,
故选A.【点睛】本题考查了线段的垂直平分线的性质,解题的关键是根据线段的垂直平分线得到相等的线段.二、填空题(每题4分,共24分)13、1【分析】画出图形,结合条件可求得该三角形的底角为30°,再结合直角三角形的性质可求得底边上的高.【详解】解:如图所示:∵∠BAC=120°,AB=AC,∴,∴Rt△ABD中,,即底边上的高为1,故答案为:1.【点睛】本题考查了含30度角的直角三角形的性质:30度角所对的直角边是斜边的一半.14、3(2a+b)(2a-b)【解析】12a2-3b2=3(4a2-b2)=3(2a+b)(2a-b);故答案是:3(2a+b)(2a-b)。15、1【分析】先去分母把分式方程转化为整式方程,再根据原方程无解可得x=2,然后把x=2代入整式方程求解即可.【详解】解:去分母,得x-3=﹣m,∵原方程无解,∴x-2=0,即x=2,把x=2代入上式,得2-3=﹣m,所以m=1.故答案为1.【点睛】本题考查了分式方程的无解问题,属于常考题型,正确理解题意、掌握解答的方法是关键.16、3xy(x﹣1)1.【分析】直接提取公因式3xy,再利用公式法分解因式得出答案.【详解】解:原式=3xy(x1﹣1x+1)=3xy(x﹣1)1.故答案为:3xy(x﹣1)1.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.17、70°【分析】根据三角形内角和定理求出x+y=145°,在△FDC中,根据三角形内角和定理求出即可.【详解】解:∵∠DCE=∠DEC,∠DFG=∠DGF,
∴设∠DCE=∠DEC=x,∠DFG=∠DGF=y,
则∠FEG=∠DEC=x,
∵在△GFE中,∠EFG=35°,
∴∠FEG+∠DGF=x+y=180°-35°=145°,
即x+y=145°,
在△FDC中,∠CDF=180°-∠DCE-∠DFC=180°-x-(y-35°)
=215°-(x+y)
=70°,
故答案为:70°.【点睛】本题考查了三角形内角和定理,解题的关键是学会利用参数解决问题,属于中考常考题型.18、15【分析】根据旋转的性质知∠DFC=60°,再根据EF=CF,EC⊥CF知∠EFC=45°,故∠EFD=∠DFC-∠EFC=15°.【详解】∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.【点睛】此题主要考查正方形的性质,解题的关键是熟知等腰直角三角形与正方形的性质.三、解答题(共78分)19、(1)-2,0;2,0;(2);(3)当或时,是以为腰的等腰三角形;(4).【分析】(1)先根据求出A,B的坐标,再把B点坐标代入求出b值,即可求解C点坐标,再根据为的中点求出D点坐标;(2)先求出P点坐标得到,再根据即可求解;(3)根据题意分①②,即可列方程求解;(4)根据题意作图,可得对称点即为A点,故AD=PD=4,设,作PF⊥AC于F点,得DF=2-x,PF=-x+4,利用Rt△PFD列方程解出x,得到P点坐标,再根据坐标间的距离公式即可求解.【详解】(1)由直线AB的解析式为,令y=0,得x=-2,∴,令x=0,得y=4,∴B(0,4)把B(0,4)代入,求得b=4,∴直线BC的解析式为令y=0,得x=4,∴∵为的中点∴故答案为:-2,0;2,0;(2)由(1)得B(0,4),当为的中点时,则,∵为的中点,∴轴,,,∴∵,∴(3)∵点是射线上一动点,设,当是以为腰的等腰三角形时,①若,,解得:,(舍去),此时;②若,,解得:,此时.综上,当或时,是以为腰的等腰三角形.(4)∵关于的对称点,若落在轴上∴点为A点,∴AD=PD=4,设,作PF⊥AC于F点,∴DF=2-x,PF=-x+4,在Rt△PFD中,DF2+PF2=DP2即(2-x)2+(-x+4)2=42解得x=3-(3+舍去)∴P(3-,+1),∴==故答案为:.【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知一次函数的图像与性质、等腰三角形及直角三角形的性质.20、(1)见解析;(2)1.5【分析】(1)利用基本作法作BP平分∠ABC;(2)作辅助线PD⊥BC,利用勾股定理求BC,再利用角平分线的性质得AP=PD,再通过在中,利用勾股定理:,列出等式求出PD,即可求出AP.【详解】(1)如图(2)过点P作PD⊥BC于点D∵,∴BC=5∵BP平分,,PD⊥BC∴AP=PD∴△APB≌△APD∴AB=BD=3设AP=PD=,则PC=4-,CD=2在中:,即∴∴=1.5【点睛】本题考查了作图-基本作图:熟练掌握基本作图.也考查了全等、勾股定理性质的应用.21、(1)见解析;(2)见解析【解析】试题分析:(1)根据图形,找到A、C点的关系,A点如何变化可得C点;将B点相应变化即可.(2)根据图形,找到A、B点的关系,B点如何变化可得A点;将D点相应变化即可.试题解析:解:(1)将线段AB向右平移3个小格(向下平移4个小格),再向下平移4个小格(向右平移3个小格),得线段CD.(2)将线段BD向左平移3个小格(向下平移1个小格),再向下平移1个小格(向左平移3个小格),得到线段AC.点睛:此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.22、∠F=26°,∠BDF=87°.【分析】根据对顶角相等可知∠CEF=∠AED;又∠ACB是△CEF的外角,所以根据外角的性质求出∠F;根据三角形内角和定理可求∠BDF的度数.【详解】解:∵∠CEF=∠AED=48°,∠ACB=∠CEF+∠F,∴∠F=∠ACB﹣∠CEF=74°﹣48°=26°;∵∠BDF+∠B+∠F=180°,∴∠BDF=180°﹣∠B﹣∠F=180°﹣67°﹣26°=87°.【点睛】此题考查三角形内角和定理和三角形的外角的性质,正确识图运用定理进行推理计算是关键.23、(1);(2),见解析;(3),见解析【分析】(1)如图①中,首先证明△ABD是等边三角形,推出∠ABD=60°,由∠PDB+∠PAB=180°,推出∠APD+∠ABD=180°,由此即可解决问题.(2)如图②中,结论:DP=DB.只要证明△DEP≌△DNB即可.(3)结论:α+β=180°.只要证明∠1=∠3,即可解决问题.【详解】解:(1)∵,,∴,∵,∴,∵,∴△ABD是等边三角形,∴,∵,∴,∴(2)结论:,理由如下:证明:作于,于.∵,∴∵,∴,,∴,∵∴∵∴,又∵∴△DEP≌△DNB,∴.(3)结论:.由(2)可知,∵,∴∵∴∴∵∴即.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等知识,解题的关键是学会添加常用辅助线,构造全等三角形,证明角相等.24、(1)180°;(2)360°;(3)1080°.【分析】(1)根据三角形外角的性质和三角形内角和定理可得∠A+∠B+∠C+∠D+∠E的度数;
(2)根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数;
(3)根据图中可找出规律∠A+∠B+∠C+∠D+∠E=180°,并且每截去一个角则会增加180度,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年自行车制动器行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年自动恒温烘箱市场前景分析及投资策略与风险管理研究报告
- 2024-2030年聚苯硫醚特种工程塑料行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年纳米技术的飞机涂料行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年红外收发器行业市场深度分析及发展策略研究报告
- 2024-2030年米酒项目融资商业计划书
- 产学研合作合同协议
- 二手房购房协议书文化用途
- 家居清洁服务协议
- 综合布线工程合作协议样本
- 运动技能学习与控制课件第十一章运动技能的练习
- 国家开放大学《可编程控制器应用实训》形考任务5(实训五)参考答案
- 印刷品服务投标方案(技术标)(宣传印刷品、业务资料等)
- 商业活动港风复古摩登年会主题方案
- 《APQP培训资料教程》课件
- 柴油采购投标方案(技术标)
- 吊装作业票(样本)
- 快递员国家职业技能标准2019年版
- 作业设计-第六单元生物的多样性及其保护
- 鼻腔肿物的护理课件
- 人教版(2023版)小学数学六年级上册全册单元同步训练及期中期末测试合集(含答案)【可编辑修改】
评论
0/150
提交评论