版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第=page11页,共=sectionpages11页2023-2024学年江西省宜春市上高县泗溪中学八年级(下)期末数学试卷一、选择题:本题共6小题,每小题3分,共18分。在每小题给出的选项中,只有一项是符合题目要求的。1.下列二次根式中,是最简二次根式的是(
)A.2 B.12 C.12.下列各组数中,不能构成直角三角形的是(
)A.3,4,5 B.6,8,10 C.5,12,13 D.5,6,73.已知一组数据3,5,4,6,3,3,4,则这组数据的众数和中位数分别是(
)A.4,4 B.4,3 C.3,3 D.3,44.如图所示,在▱ABCD中,E,F分别是边BC,AD上的点,若添加条件,使四边形AECF一定是平行四边形,则添加的条件不可以是(
)A.AE//CF B.BE=DF
C.∠BAE=∠DCF D.AE=CF5.已知点A(−1,m),B(4,n)在直线y=(k2+1)x−2上,则下列说法正确的是A.0<m<n B.m<n<0 C.m<0<n D.n<0<m6.如图,在Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,BE平分∠ABC交AC于点E,交AD于点F,FG//BD,交AC于点G,过点E作EH⊥CD于点H,交FG于点M,连接FH,给出以下结论:①∠AEF=∠AFE;②四边形AFHE是菱形;③FH=CG;④若AB=AC,则FD=FM.其中正确结论的序号为(
)A.①②③④ B.②③④ C.①③④ D.①②③二、填空题:本题共6小题,每小题3分,共18分。7.若x−1在实数范围内有意义,则实数x的取值范围是______.8.若平行四边形中两个内角的度数之比是1:2,则较小内角的度数是______.9.已知样本方差s2=150[(10.在平面直角坐标系xOy中,一次函数y=kx和y=−x+3的图象如图所示,则关于x的一元一次不等式kx<−x+3的解集是______.11.如图所示,菱形ABCD边长为1,∠DAB=60°,连接AC,以AC为边作第二个菱形ACEF,∠FAC=60°,连接AE,以AE为边作第三个菱形AEGH,∠HAE=60°,…,按这个规律所作的第2024个菱形的边长是______.12.如图,已知直线l:y=kx+b交x轴,y轴于点B,点A,AB=2,∠OAB=30°,点P是x轴上方直线l上一动点,若△AOP是等腰三角形,则点P的坐标是______.三、解答题:本题共9小题,共64分。解答应写出文字说明,证明过程或演算步骤。13.(本小题6分)
(1)计算:120÷6−6×56;
(2)如图,在△ABC中,D,E,F分别是BC14.(本小题6分)
如图,将▱ABCD的对角线BD向两个方向延长,分别至点E和点F,使BE=DF.求证:AE//CF,AE=CF.15.(本小题6分)
已知a=3+1,b=316.(本小题6分)
如图,正方形ABCD中,E是BC上一点,请你仅用无刻度的直尺按下列要求画图(保留画图痕迹,不写画法).
(1)如图1,请在CD上作线段CF,使CF=CE;
(2)如图2,以E为顶点,作一个矩形.17.(本小题6分)
如图,已知一条直线上三个点,其坐标分别是(−1,2),(n,6),(−3,−2),直线与x轴相交于点A,与y轴相交于点B.
(1)求n的值;
(2)若在y轴上有一点P,使OP=12OB,求△PAB18.(本小题8分)
八(1)班准备从甲、乙两名男生中选派一名参加学校组织的一分钟跳绳比赛,在相同的条件下,分别对两名男生进行了八次一分钟跳绳测试.现将测试结果绘制成了不完整的统计图表,请根据统计图表中的信息解答下列问题:平均数中位数众数方差甲175bc93.75乙a175180,175,17037.5(1)求a、b、c的值;
(2)根据以上的数据分析,要选一名成绩稳定的同学去比赛,你认为由谁去参赛更为合理,说出两点理由.19.(本小题8分)
如图所示,以矩形ABCD的边AB,AD所在直线分别为横轴,纵轴,建立平面直角坐标系,其中点A和原点重合,已知点C(8,4),折叠矩形,EF是折痕,使点A与点C重合,连接AF.
(1)点B,点D的坐标分别为______,______;
(2)求证:四边形AECF是菱形;
(3)EF长为多少,请直接写出答案.20.(本小题8分)
端午节是我国的传统节日,吃粽子是端午节的传统习俗,某超市在端午节前购进A,B两种品牌的粽子进行销售,其进价分别是45元/盒,50元/盒,已知品牌B的粽子售价为60元/盒,销售部分后,为加快资金回笼,对品牌A的粽子进行降价销售,节后,两种品牌的粽子全部售完.A,B两种品牌的粽子的销售金额y(元)与销售量x(盒)的函数关系如图所示,请根据图象解答下列问题:
(1)降价前品牌A的粽子的售价是______元/盒;
(2)求降价后品牌A的粽子的销售金额y(元)与销售量x(盒)的函数解析式(要写出自变量的取值范围);
(3)该品牌粽子这次销售完后共盈利多少元?21.(本小题10分)
正方形是所有四边形中性质最为丰富的,尤其是对角线,相等且互相垂直平分,每条对角线平分一组对角,如果我们把两个正方形按照一定的方式放在一起,会发现一些很有趣的结论.已知正方形ABCD,E是对角线AC上一点,连接DE,过E作EF⊥ED交BC于F,以DE,EF为邻边作矩形EFGD,连CG.
(1)如图1所示,①若AB=1,则AC=______;
②求证:矩形EFGD是正方形;
(2)①将(1)中的正方形EFGD顶点E沿着AC平移,顶点F落在BC延长线上时,如图2所示,试探究CG,EC,CD的数量关系,并说明理由;
②继续平移,当顶点E落在AC延长线上时,如图3所示,请直接写出CG,EC,CD的数量关系.
参考答案1.A
2.D
3.D
4.D
5.C
6.A
7.x≥1
8.60°
9.82.1
10.x<1
11.(12.(−32,13.(1)解:原式=120÷6−6×56
=20−5
=25−5
=5;
(2)证明:∵D,E,F分别是BC,AB,
∴DE为△ABC的中位线,
∴DE=14.证明:连接AC交BD于点O
∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO.
∵BE=DF,
∴OE=OF.
∴四边形AECF是平行四边形.
∴AE//CF,AE=CF.
15.解:∵a=3+1,b=3−1,
∴a+b=(16.解:(1)如图1,连接AC,DE,相交于点M,连接BM并延长,交CD于点F,
则线段CF即为所求.
(2)如图2,连接AC,BD相交于点O,连接EO并延长,交AD于点G,连接BG交AC于点N,连接DN并延长,交AB于点H,连接DE交AC于点M,连接BM并延长,交CD于点F,连接EF,FG,GH,EH,
则四边形EFGH即为所作矩形.
17.解:(1)设该直线的函数表达式为y=kx+b(k、b为常数,且k≠0).
将坐标(−1,2)和(−3,−2)分别代入y=kx+b,
得−k+b=2−3k+b=−2,
解得k=2b=4,
∴该直线的函数表达式为y=2x+4,
将坐标(n,6)代入y=2x+4,
得2n+4=6,
解得n=1.
(2)当y=0时,得2x+4=0,解得x=−2,
∴A(−2,0);
当x=0时,得y=4,
∴B(0,4),
∴OB=4.
设点P(0,a),则OP=|a|,
∴|a|=12×4=2,
∴a=2或a=−2,
∴P(0,2)或P(0,−2).
∴BP=2或6,
∴S△PAB=12BP⋅OA,
OA=2,
当BP=2时,S18.解:(1)a=175×2+180×2+170×2+185+1658=175,
排序:160,165,165,175,180,185,185,185,
最中间位置的数是175,180,
∴b=175+1802=177.5.
甲组数据中,185这个数据出现次数最多,
∴c=185,
(2)19.(1)(8,0),(0,4);
(2)证明:∵沿着EF折叠,
∴AE=CE,∠AEF=∠CEF.
∵四边形ABCD是平行四边形,
∴AB//CD,即CF//AE.
∴∠AEF=∠CFE.
∴∠CEF=∠CFE.
∴CF=CE.
∴AE=CF,又CF//AE,
∴四边形AECF是平行四边形.
又∵AE=CE,
∴▱ABCD是菱形;
(3)解:∵C(8,4)
∴AB=8,BC=4,
设AE=x,
则CE=x,BE=8−x,
在Rt△BCE中,CE2=BE2+BC2,
∴x2=(8−x)2+42,
解得x=5,
∵▱ABCD是菱形,
∴AF=CF=AE=5,
过F作FG⊥AB于G,
则四边形DFGA是矩形,
∴AG=DF=DC−CF=220.(1)65;
(2)6000÷60=100,可知A,B两个品牌均购进了100盒,
设降价后A品牌销售金额和销售数量的函数解析式为:y=kx+b,把(60,3900)和(100,6000)代入,得:
60k+b=3900100k+b=6000,
解得k=52.5b=750,
∴y=52.5x+750(60<x≤100).
(3)总成本为:100×(45+55)=9500元,
总收入为:6000×2=12000元,
共盈利:12000−9500=2500元.
答:该品牌粽子这次销售完后共盈利250021.(1)①2;
②证明:如图,过点E作EM⊥BC,EN⊥CD,
∴∠ENC=∠END=∠EMC=90°,
∵正方形ABCD,
∴AC平分∠BCD,∠BCD=90°,
∴EM=EN,
∴四边形EMCN为正方形,
∴∠MEN=90°,
∴∠MEF+∠FEN=90°,
∵四边形DEFG为矩形,
∴∠DEF=90°,
∴∠DEN+∠FEN=90°,
∴∠MEF=∠NED,
又∵EM=EN,∠END=∠EMC=90°,
∴△EMF≌△END
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 运载工具用顶部行李箱市场发展现状调查及供需格局分析预测报告
- 2024年度外墙保温工程质量保修合同
- 纸制杯垫市场需求与消费特点分析
- 2024年度特色食材供应合同
- 探测器用接口市场发展现状调查及供需格局分析预测报告
- 2024年度建筑质量保证合同
- 2024年度技术合同:便利店智能化系统开发与实施
- 蛋白质补充剂市场发展现状调查及供需格局分析预测报告
- 2024年度化妆品销售代理合同
- 2024年度建筑行业材料采购合同
- (正式版)HGT 6313-2024 化工园区智慧化评价导则
- 婴幼儿消化系统的生理特点
- 手术后营养补充与饮食计划
- 智鼎在线测评题库答案2024
- T-CTTS 0019-2023 数字化实验室等级评价规范
- 公共资源交易培训课件
- 住院患者静脉血栓栓塞症预防护理与管理专家共识
- 第五单元作业设计 统编版语文七年级上册
- 开学收心主题班会PPT4
- 《汽车安全驾驶培训》课件
- 达人运营计划书
评论
0/150
提交评论