2022年山东省青岛超银中学八年级数学第一学期期末调研试题含解析_第1页
2022年山东省青岛超银中学八年级数学第一学期期末调研试题含解析_第2页
2022年山东省青岛超银中学八年级数学第一学期期末调研试题含解析_第3页
2022年山东省青岛超银中学八年级数学第一学期期末调研试题含解析_第4页
2022年山东省青岛超银中学八年级数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,,以点为圆心,小于长为半径作弧,分别交、于、两点,再分别以为圆心,大于的长为半径画弧,两弧交于点,作射线,交于点,若,则的度数为()A. B. C. D.2.如图,ΔABC与ΔA’B’C’关于直线l对称,则∠B的度数为()A.30° B.50° C.90° D.100°3.如图,点D、E分别在AC、AB上,已知AB=AC,添加下列条件,不能说明△ABD≌△ACE的是()A.∠B=∠C B.AD=AE C.∠BDC=∠CEB D.BD=CE4.如图,平行四边形ABCD中,AB=6cm,AD=10cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.1次 B.2次 C.3次 D.4次5.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,过O点作EF∥BC,交AB于E,交AC于F,若BE=3,CF=2,则线段EF的长为()A.5 B.6 C.7 D.86.如图,在中,,,是的平分线,,垂足为,若,则的周长为()A.10 B.15 C.10 D.207.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则BC的长是()A. B.2 C. D.8.估算的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间9.已知:且,则式子:的值为()A. B. C.-1 D.210.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33 B.-33 C.-7 D.711.计算÷×结果为()A.3 B.4 C.5 D.612.下面的图案中,不是轴对称图形的是()A. B.C. D.二、填空题(每题4分,共24分)13.若=1.则x=___.14.如图,,则的长度为__________.15.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.16.已知一个三角形的三边长为3、8、a,则a的取值范围是_____________.17.如图,在四边形中,,对角线平分,连接,,若,,则_________________.18.二次三项式是完全平方式,则的值是__________.三、解答题(共78分)19.(8分)对于多项式x3﹣5x2+x+10,我们把x=2代入此多项式,发现x=2能使多项式x3﹣5x2+x+10的值为0,由此可以断定多项式x3﹣5x2+x+10中有因式(x﹣2),(注:把x=a代入多项式,能使多项式的值为0,则多项式一定含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),分别求出m、n后再代入x3﹣5x2+x+10=(x﹣2)(x2+mx+n),就可以把多项式x3﹣5x2+x+10因式分解.(1)求式子中m、n的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x3+5x2+8x+1.20.(8分)已知:如图,,//,,且点、、、在同一条直线上.求证://.21.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△,请画出△并写出点的坐标;(2)请画出△ABC关于轴对称的△,并写出点的坐标.22.(10分)计算(1)(2)23.(10分)如图,锐角△ABC的两条高BE、CD相交于点O,且OB=OC,∠A=60°.(1)求证:△ABC是等边三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.24.(10分)如图,已知在中,,,,是上的一点,,点从点出发沿射线方向以每秒个单位的速度向右运动.设点的运动时间为.连结.(1)当秒时,求的长度(结果保留根号);(2)当为等腰三角形时,求的值;(3)过点做于点.在点的运动过程中,当为何值时,能使?25.(12分)解方程:(1)4x2﹣8=0;(2)(x﹣2)3=﹣1.26.如图所示,点B,E分别在AC,DF上,BD,CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.

参考答案一、选择题(每题4分,共48分)1、A【分析】先由平行线的性质得出,进而可求出的度数,再根据角平分线的定义求出的度数,则的度数可知,最后利用求解即可.【详解】∵∴∵AH平分故选:A.【点睛】本题主要考查平行线的性质和角平分线的画法及定义,掌握平行线的性质和角平分线的画法及定义是解题的关键.2、D【解析】∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=50°,∠C=∠C′=30°;∴∠B=180°﹣80°=100°.故选D.3、D【分析】要使△ABD≌△ACE,则需对应边相等,夹角相等,可用两边夹一角,也可用两角夹一边判定全等.【详解】已知条件中AB=AC,∠A为公共角,A中∠B=∠C,满足两角夹一边,可判定其全等,A正确;B中AD=AE两边夹一角,也能判定全等,B也正确;C中∠BDC=∠CEB,即∠ADB=∠AEC,又∠A为公共角,∴∠B=∠C,所以可得三角形全等,C对;D中两边及一角,但角并不是夹角,不能判定其全等,D错.故选D.【点睛】本题考查了全等三角形的判定;熟练掌握全等三角形的判定方法,是正确解题的前提;做题时要按判定全等的方法逐个验证.4、C【分析】易得两点运动的时间为12s,PD=BQ,那么以P、D、Q、B四点组成平行四边形平行四边形,列式可求得一次组成平行四边形,算出Q在BC上往返运动的次数可得平行的次数.【详解】解:∵四边形ABCD是平行四边形,∴BC=AD=12,AD∥BC,∵四边形PDQB是平行四边形,∴PD=BQ,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,第一次:12﹣t=12﹣4t,∴t=0,此时两点没有运动,∴点Q以后在BC上的每次运动都会有PD=QB,∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,故选C.【点睛】本题考查列了矩形的性质和平行线的性质.解决本题的关键是理解以P、D、Q、B四点组成平出四边形的次数就是Q在BC上往返运动的次数.5、A【分析】利用角平分线性质结合平行线性质,可以证出∠EBO=∠BOE,∠COF=∠OCF,由等角对等边可得线段相等,等量代换即可得.【详解】∵BO平分∠ABC,CO平分∠ACB,∴∠ABO=∠CBO,∠ACO=∠BCO,又∵EF∥BC,∴∠CBO=∠BOE,∠BCO=∠COF,∴∠EBO=∠BOE,∠OCF=∠COF,∴BE=EO,FO=CF,∴EF=EO+FO=BE+CF=3+2=5,故选:A.【点睛】本题考查了角平分线的定义,等腰三角形的判定和性质,平行线的性质,线段相等的等量代换,熟记图形的性质是解题的关键.6、C【分析】根据勾股定理即可求出AB,然后根据角平分线的性质和定义DC=DE,∠CAD=∠EAD,利用直角三角形的性质即可求出∠ADC=∠ADE,再根据角平分线的性质可得AE=AC,从而求出BE,即可求出的周长.【详解】解:∵在中,,,∴AB=∵是的平分线,∴DC=DE,∠CAD=∠EAD,∠DEA=90°∴∠ADC=90°-∠CAD=90°-∠EAD=∠ADE即DA平分∠CDE∴AE=AC=10cm∴BE=AB-AE=∴的周长=DE+DB+BE=DC+DB+BE=BC+BE=10+故选C.【点睛】此题考查的是勾股定理、角平分线的性质和直角三角形的性质,掌握用勾股定理解直角三角形、角平分线的性质和直角三角形的两个锐角互余是解决此题的关键.7、D【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出AD=CE,再利用勾股定理就可以求出BC的值.【详解】解:∵BE⊥CE,AD⊥CE,

∴∠E=∠ADC=90°,

∴∠EBC+∠BCE=90°.

∵∠BCE+∠ACD=90°,

∴∠EBC=∠DCA.

在△CEB和△ADC中,

∴△CEB≌△ADC(AAS),

∴CE=AD=3,在Rt△BEC中,,故选D.【点睛】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解题的关键.8、C【分析】应先找到所求的无理数在哪两个和它接近的数之间,然后判断出所求的无理数的范围,由此即可求解.【详解】解:∵∴,,∴,即,∴的值在3和4之间.故选:C.【点睛】本题主要考查无理数的估算,掌握无理数的估算方法是解题的关键.9、A【分析】先通过约分将已知条件的分式方程化为整式方程并求解,再变形要求的整式,最后代入具体值计算即得.【详解】解:∵∴∴∴∴经检验得是分式方程的解.∵∴∴故选:A.【点睛】本题考查分式的基本性质及整式的乘除法运算,熟练掌握完全平方公式是求解关键,计算过程中为使得计算简便应该先变形要求的整式.10、D【解析】试题分析:关于原点对称的两个点,横坐标和纵坐标分别互为相反数.根据性质可得:a=-13,b=20,则a+b=-13+20=1.考点:原点对称11、B【解析】===.故选B.12、B【分析】根据轴对称图形的概念求解.【详解】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、是轴对称图形,故错误.故选B.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.二、填空题(每题4分,共24分)13、1或±2【分析】直接利用分式的值为零则分子为零,分母不为零进而得出答案.【详解】解:∵,∴x2﹣1=1且x+1≠1,或|x|﹣2=1,且x+1≠1,解得:x=1或x=±2.故答案为:1或±2.【点睛】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.14、2cm【分析】根据全等三角形的对应边都相等,得到、的长,即可求出的长.【详解】解:故答案为:2cm.【点睛】本题考查的主要是全等三角形的性质,对应的边都相等,注意到全等三角形的对应顶点写在对应的位置,正确判断对应边即可.15、【分析】方法一:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解;方法二:根据方程组的特点可得方程组的解是,再利用加减消元法即可求出a,b.【详解】详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组整理为:解得:方法二:∵关于x、y的二元一次方程组的解是∴方程组的解是解得故答案为:.【点睛】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.16、5<a<1【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得8-3<a<8+3,再解即可.【详解】解:根据三角形的三边关系可得:8-3<a<8+3,

解得:5<a<1,

故答案为:5<a<1.【点睛】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.17、1【分析】由等腰三角形的性质和角平分线的性质可推出AD∥BC,然后根据平行线的性质和已知条件可推出CA=CD,可得CB=CA=CD,过点C作CE⊥BD于点E,CF⊥AB于点F,如图,根据等腰三角形的性质和已知条件可得DE的长和,然后即可根据AAS证明△BCF≌△CDE,可得CF=DE,再根据三角形的面积公式计算即得结果.【详解】解:∵,∴∠CBD=∠CDB,∵平分,∴∠ADB=∠CDB,∴∠CBD=∠ADB,∴AD∥BC,∴∠CAD=∠ACB,∵,,∠CBD=∠CDB,∴,∴,∴CA=CD,∴CB=CA=CD,过点C作CE⊥BD于点E,CF⊥AB于点F,如图,则,,∵,,∴,在△BCF和△CDE中,∵,∠BFC=∠CED=90°,CB=CD,∴△BCF≌△CDE(AAS),∴CF=DE=5,∴.故答案为:1.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.18、17或-7【分析】利用完全平方公式的结构特征判断即可确定出k的值.【详解】解:∵二次三项式4x2-(k-5)x+9是完全平方式,

∴k-5=±12,

解得:k=17或k=-7,

故答案为:17或-7【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.三、解答题(共78分)19、(1)m=﹣3,n=﹣5;(2)x3+5x2+8x+1=(x+1)(x+2)2.【分析】(1)根据x3﹣5x2+x+10=(x﹣2)(x2+mx+n),得出有关m,n的方程组求出即可;(2)由把x=﹣1代入x3+5x2+8x+1,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,进而将多项式分解得出答案.【详解】(1)在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n),中,分别令x=0,x=1,即可求出:m=﹣3,n=﹣5(2)把x=﹣1代入x3+5x2+8x+1,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,用上述方法可求得:a=1,b=1,所以x3+5x2+8x+1=(x+1)(x2+1x+1),=(x+1)(x+2)2.【点睛】本题主要考查了因式分解的应用,根据已知获取正确的信息,是近几年中考中热点题型同学们应熟练掌握获取正确信息的方法.20、见解析【分析】先利用平行线的性质和等量代换得出,,然后利用SAS即可证明,则有,最后利用同位角相等,两直线平行即可证明.【详解】解:,.,,即.在和中,,,.【点睛】本题主要考查全等三角形的判定及性质,平行线的判定及性质,掌握全等三角形的判定及性质和平行线的判定及性质是解题的关键.21、(1)图详见解析,点的坐标(-2,-1);(2)图详见解析,点的坐标(4,-1)【分析】(1)根据题干要求,分别对点A、B、C进行平移,并依次连接对应点得到平移后图形,读图可得到点的坐标;(2)分别作出点A、B、C关于y轴对应的点,并依次连接对应点得到图形,读图可得到的坐标.【详解】(1)图形如下:则点的坐标(-2,-1);(2)图形如下:则点的坐标(4,-1).【点睛】本题考查在格点中绘制平移和对称的图形,只需找出对应点,然后依次连接对应点即为变换后的图形.22、(1);(2)【分析】(1)先根据二次根式、绝对值和负整数指数幂的性质化简,然后再进行计算;(2)先化简各二次根式,然后再进行计算.【详解】解:(1)原式;(2)原式.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23、(1)见解析;(2)点O在∠BAC的平分线上,理由见解析.【解析】(1)由OB=OC,得∠OBC=∠OCB.再证∠BEC=∠CDB=90°由(AAS)可证△BCE≌△CBD,则∠DBC=∠ECB,所以,含有60°的等腰三角形是等边三角形;(2)由(1△BCE≌△CBD,得,EB=CD.又OB=OC,所以OE=OD,再由角平分线性质定理可证得.【详解】(1)证明:∵OB=OC,∴∠OBC=∠OCB.∵BE⊥AC,CD⊥AB,∴∠BEC=∠CDB=90°.又∵BC=BC,∴△BCE≌△CBD(AAS),∴∠DBC=∠ECB,∴AB=AC.又∵∠A=60°,∴△ABC是等边三角形.(2)解:点O在∠BAC的平分线上.理由如下:连接AO.由(1)可知△BCE≌△CBD,∴EB=CD.∵OB=OC,∴OE=OD.又∵OE⊥AC,OD⊥AB,∴点O在∠BAC的平分线上.【点睛】本题考核知识点等边三角形判定,角平分线.解题关键点:证三角形全等得到对应边相等,从而得到等腰三角形,再证三角形是等边三角形;利用角平分线的性质定理推出必要条件.24、(1)2;(2)4或16或2;(3)2或1.【分析】(1)根据题意得BP=2t,从而求出PC的长,然后利用勾股定理即可求出AP的长;(2)先利用勾股定理求出AB的长,然后根据等腰三角形腰的情况分类讨论,分别列出方程即可求出t的值;(3)根据点P的位置分类讨论,分别画出对应的图形,根据勾股定理求出AE,分别利用角平分线的性质和判定求出AP,利用勾股定理列出方程,即可求出t的值.【详解】(1)根据题意,得BP=2t,∴PC=16-2t=16-2×3=10,∵AC=8,在Rt△APC中,根据勾股定理,得AP===2.答:AP的长为2.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB===8若BA=BP,则2t=8,解得:t=4;若AB=AP,∴此时AC垂直平分BP则BP=32,2t=32,解得:t=16;若PA=PB=2t,CP=16-2t∵PA2=CP2+AC2则(2t)2=(16-2t)2+82,解得:t=2.答:当△ABP为等腰三角形时,t的值为4、16、2.(3)若P在C点的左侧,连接PDCP=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论