版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.一种纳米材料的厚度是0.00000034m,数据0.00000034用科学记数法表示为()A. B. C. D.2.如图,正方形ABCD的面积是(
)A.5 B.25 C.7
D.103.如果向西走3米,记作-3m,那么向东走5米,记作().A.3m B.5m C.-3m D.-5m4.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=7,点E在边BC上,并且CE=2,点F为边AC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是()A.0.5 B.1 C.2 D.2.55.下列计算不正确的是()A. B. C. D.6.如果实数a=,且a在数轴上对应点的位置如图所示,其中正确的是()A.B.C.D.7.如图,在△ABC中,AB=AC,D是BC的中点,连接AD,E在BC的延长线上,连接AE,∠E=2∠CAD,下列结论:①AD⊥BC;②∠E=∠BAC;③CE=2CD;④AE=BE.其中正确的个数是()A.1个 B.2个 C.3个 D.4个8.下列长度的三条线段能组成三角形的是()A.6cm,8cm,9cm B.4cm,4cm,10cmC.5cm,6cm,11cm D.3cm,4cm,8cm9.要使分式有意义,则的取值应满足()A. B. C. D.10.在代数式中,分式共有().A.2个 B.3个 C.4个 D.5个二、填空题(每小题3分,共24分)11.在三角形ABC中,∠C=90°,AB=7,BC=5,则AC的长为__________________.12.如果,那么值是_____.13.,则__________.14.如图,,,,若,则的长为______.15.如图,平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点B的坐标为(10,6),点P为BC边上的动点,当△POA为等腰三角形时,点P的坐标为_________.16.关于的分式方程的解为负数,则的取值范围是_____.17.如图,在中,,平分,交于点,若,,则周长等于__________.18.如图,,将直线向右平移到直线处,则__________°.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,是坐标原点,点的坐标为,点的坐标,点是直线上位于第二象限内的一个动点,过点作轴于点,记点关于轴的对称点为点.(1)求直线的解析式;(2)若,求点的坐标.20.(6分)阅读下列推理过程,在括号中填写理由.如图,点、分别在线段、上,,交于点,平分,求证:平分.证明:∵平分(已知)∴(______)∵(已知)∴(______)故(______)∵(已知)∴(______)∴(______)∴(等量代换)∴平分(______)21.(6分)在矩形ABCD中,,点G,H分别在边AB,DC上,且HA=HG,点E为AB边上的一个动点,连接HE,把△AHE沿直线HE翻折得到△FHE.(1)如图1,当DH=DA时,①填空:∠HGA=度;②若EF∥HG,求∠AHE的度数,并求此时a的最小值;(2)如图3,∠AEH=60°,EG=2BG,连接FG,交边FG,交边DC于点P,且FG⊥AB,G为垂足,求a的值.22.(8分)阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:一个直角三角形的两条直角边分别为,那么这个直角三角形斜边长为____;如图①,于,求的长度;如图②,点在数轴上表示的数是____请用类似的方法在图2数轴上画出表示数的点(保留痕迹).23.(8分)如图,四边形中,,且,求的度数.24.(8分)计算:(1);(2)25.(10分)如图,△ABC是等边三角形,DF⊥AB,DE⊥CB,EF⊥AC,求证:△DEF是等边三角形.26.(10分)计算及解方程组:(1)(2)
参考答案一、选择题(每小题3分,共30分)1、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数据0.00000034用科学记数法表示为3.4×10−1.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1⩽|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2、B【解析】在直角△ADE中利用勾股定理求出AD2,即为正方形ABCD的面积.【详解】解:∵在△ADE中,∠E=90°,AE=3,DE=4,∴AD2=AE2+DE2=32+42=1,∴正方形ABCD的面积=AD2=1.故选B.【点睛】本题考查勾股定理的应用,掌握公式正确计算是解题关键.3、B【解析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向西走3米记作-3米,∴向东走5米记作+5米.故选:B.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.4、A【分析】如图所示:当PE⊥AB.由翻折的性质和直角三角形的性质即可得到即可.【详解】如图所示:当PE⊥AB,点P到边AB距离的值最小.由翻折的性质可知:PE=EC=1.∵DE⊥AB,∴∠PDB=90°.∵∠B=30°,∴DE=BE=(7﹣1)=1.2,∴点P到边AB距离的最小值是1.2﹣1=0.2.故选:A.【点睛】此题参考翻折变换(折叠问题),直角三角形的性质,熟练掌握折叠的性质是解题的关键.5、A【分析】根据无理数的混合运算法则,逐一计算,即可判定.【详解】A选项,,错误;B选项,,正确;C选项,,正确;D选项,,正确;故答案为A.【点睛】此题主要考查无理数的混合运算,熟练掌握运算法则,即可解题.6、C【解析】分析:估计的大小,进而在数轴上找到相应的位置,即可得到答案.详解:由被开方数越大算术平方根越大,即故选C.点睛:考查了实数与数轴的的对应关系,以及估算无理数的大小,解决本题的关键是估计的大小.7、C【分析】等腰三角形的性质,“三线合一”,顶角的平分线,底边的高和底边上的中线,三条线互相重合便可推得.【详解】解:①∵在△ABC中,AB=AC,D是BC的中点,∴AD⊥BC;②∵在△ABC中,AB=AC,D是BC的中点,∴∠BAC=2∠CAD,∵∠E=2∠CAD,∴∠E=∠BAC;③无法证明CE=2CD;④∵在中,AB=AC,∴∠B=∠ACB,∵∠ACB=∠E+∠CAE,∠E=∠BAC,∴∠B=∠EAB,∴AE=BE.【点睛】掌握等腰三角形“三线合一”为本题的关键.8、A【分析】根据三角形中:两边之和大于第三边,两边之差小于第三边即可求解.【详解】解:A、∵两边之和大于第三边,两边之差小于第三边,∴能构成三角形,故本选项正确;B、∵4+4<10,∴不能构成三角形,故本选项错误;C、∵5+6=11,∴不能构成三角形,故本选项错误;D、∵3+4=7<8,∴不能构成三角形,故本选项错误.故选:A.【点睛】本题考查的是三角形三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.9、A【解析】根据分式有意义的条件是分母不为0列出不等式,解可得自变量x的取值范围,【详解】解:由题意得,x-5≠0,
解得,x≠5,
故选:A.【点睛】本题主要考查了分式有意义的条件,掌握分式有意义的条件是分母不等于0是解题的关键.10、B【分析】根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【详解】解:代数式是分式,共3个,故选:B.【点睛】此题主要考查了分式定义,关键是掌握分式的分母必须含有字母,而分子可以字母,也可以不含字母,亦即从形式上看是的形式,从本质上看分母必须含有字母.二、填空题(每小题3分,共24分)11、.【详解】解:根据勾股定理列式计算即可得解:∵∠C=90°,AB=7,BC=5,∴.故答案为:.12、1【分析】首先根据二次根式有意义的条件求出x,y的值,然后代入即可求出答案.【详解】根据二次根式有意义的条件可知解得∴故答案为:1.【点睛】本题主要考查代数式求值,掌握二次根式有意义的条件,求出相应的x,y的值是解题的关键.13、1【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可求解.【详解】∵,
∴x-8=0,y+2=0,
∴x=8,y=-2,
∴x+y=8+(-2)=1.
故答案为:1.【点睛】此题考查算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.14、1【分析】作PE⊥OB于E,先根据角平分线的性质求出PE的长度,再根据平行线的性质得∠OPC=∠AOP,然后即可求出∠ECP的度数,再在Rt△ECP中利用直角三角形的性质即可求出结果.【详解】解:作PE⊥OB于E,如图所示:∵PD⊥OA,∴PE=PD=4,∵PC∥OA,∠AOP=∠BOP=15°,∴∠OPC=∠AOP=15°,∴∠ECP=15°+15°=30°,∴PC=2PE=1.故答案为:1.【点睛】本题考查了角平分线的性质定理、三角形的外角性质和30°角的直角三角形的性质,属于基本题型,作PE⊥OB构建角平分线的模型是解题的关键.15、(2,6)、(5,6)、(8,6)【解析】当PA=PO时,根据P在OA的垂直平分线上,得到P的坐标;当OP=OA=10时,由勾股定理求出CP即可;当AP=AO=10时,同理求出BP、CP,即可得出P的坐标.【详解】当PA=PO时,P在OA的垂直平分线上,P的坐标是(5,6);当OP=OA=10时,由勾股定理得:CP==8,P的坐标是(8,6);当AP=AO=10时,同理BP=8,CP=10-8=2,P的坐标是(2,6).故答案为(2,6),(5,6),(8,6).【点睛】本题主要考查对矩形的性质,等腰三角形的性质,勾股定理,坐标与图形的性质等知识点的理解和掌握,能求出所有符合条件的P的坐标是解此题的关键.16、m<2【分析】先将分式方程化为整式方程求出解x=m-2,根据原方程的解是负数得到,求出m的取值范围,再由得到,即可得到答案.【详解】,去分母得m-3=x-1,解得x=m-2,∵该分式方程的解是负数,∴,解得m<2,∵,∴,解得,故答案为:m<2.【点睛】此题考查分式方程的解的情况求方程中未知数的取值范围,正确理解题意列得不等式求出未知数的取值范围是解此题的关键.17、6+6【分析】根据含有30°直角三角形性质求出AD,根据勾股定理求出AC,再求出AB和BD即可.【详解】因为在中,,所以所以AD=2CD=4所以AC=因为平分,所以=2所以所以BD=AD=4,AB=2AC=4所以周长=AC+BC+AB=++2+4==6+6故答案为:6+6【点睛】考核知识点:含有30°直角三角形性质,勾股定理;理解直角三角形相关性质是关键.18、1【分析】直接利用平移的性质结合三角形外角的性质得出答案.【详解】由题意可得:m∥n,则∠CAD+∠1=180°,可得:∠3=∠4,故∠4+∠CAD=∠2,则∠2−∠3=∠CAD+∠3−∠3=∠CAD=180°−∠1=180°−70°=1°.故答案为:1.【点睛】此题主要考查了平移的性质以及平行线的性质,正确转化角的关系是解题关键.三、解答题(共66分)19、(1);(2)【分析】(1)设直线AB解析式为,把A和B的坐标代入求出k和b的值,即可求出解析式;(2)由以及OA的长,确定出Q横坐标,根据P与Q关于y轴对称,得到P点横坐标,代入直线AB解析式求出纵坐标,即可确定出P坐标.【详解】解:(1)设直线的解析式为,∵直线过点,两点,∴解得:∴直线的解析式为.(2)如解图所示,连接、,过点作轴于点,∵当时,为等腰三角形,而轴于点,∴,∵,∴∴,∴,∵点关于轴的对称点为点,∴,∵点是直线上位于第二象限内的一个点,∴,∴点的坐标为.【点睛】本题考查的是一次函数,先利用待定系数法求出直线的解析式,之后根据坐标和图形性质求出点的坐标.20、角平分线的定义;两直线平行,内错角相等;等量代换;两直线平行,同位角相等;两直线平行,内错角相等;角平分线的定义【分析】根据角平分线的定义得到∠1=∠2,根据平行线的性质得到∠1=∠3,等量代换得到∠2=∠3,根据平行线的性质得到∠2=∠5,等量代换即可得到结论;【详解】证明:∵平分(已知),∴(角平分线的定义),∵(已知),∴(两直线平行,内错角相等),故(等量代换),∵(已知),∴(两直线平行,同位角相等),∴(两直线平行,内错角相等),∴(等量代换),∴平分(角平分线的定义);【点睛】本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.21、(1)①45;②当∠AHE为锐角时,∠AHE=11.5°时,a的最小值是2;当∠AHE为钝角时,∠AHE=111.5°时,a的最小值是;(1).【详解】(1)①∵四边形ABCD是矩形,∴∠ADH=90°.∵DH=DA,∴∠DAH=∠DHA=45°.∴∠HAE=45°.∵HA=HG,∴∠HAE=∠HGA=45°②分两种情况讨论:第一种情况:如答图1,∠AHE为锐角时,∵∠HAG=∠HGA=45°,∴∠AHG=90°.由折叠可知:∠HAE=∠F=45°,∠AHE=∠FHE,∵EF∥HG,∴∠FHG=∠F=45°.∴∠AHF=∠AHG∠FHG=45°,即∠AHE+∠FHE=45°.∴∠AHE=11.5°.此时,当B与G重合时,a的值最小,最小值是1.第二种情况:如答图1,∠AHE为钝角时,∵EF∥HG,∴∠HGA=∠FEA=45°,即∠AEH+∠FEH=45°.由折叠可知:∠AEH=∠FEH,∴∠AEH=∠FEH=11.5°.∵EF∥HG,∴∠GHE=∠FEH=11.5°.∴∠AHE=90°+11.5°=111.5°.此时,当B与E重合时,a的值最小,设DH=DA=x,则AH=CH=x,在Rt△AHG中,∠AHG=90°,由勾股定理得:AG=AH=1x,∵∠AEH=∠FEH,∠GHE=∠FEH,∴∠AEH=∠GHE.∴GH=GE=x.∴AB=AE=1x+x.∴a的最小值是.综上所述,当∠AHE为锐角时,∠AHE=11.5°时,a的最小值是1;当∠AHE为钝角时,∠AHE=111.5°时,a的最小值是.(1)如答图3:过点H作HQ⊥AB于Q,则∠AQH=∠GQH=90°,在矩形ABCD中,∠D=∠DAQ=90°,∴∠D=∠DAQ=∠AQH=90°.∴四边形DAQH为矩形.∴AD=HQ.设AD=x,GB=y,则HQ=x,EG=1y,由折叠可知:∠AEH=∠FEH=60°,∴∠FEG=60°.在Rt△EFG中,EG=EF×cos60°=1y,在Rt△HQE中,,∴.∵HA=HG,HQ⊥AB,∴AQ=GQ=.∴AE=AQ+QE=.由折叠可知:AE=EF,即,即.∴AB=1AQ+GB=.∴.22、;;.数轴上画出表示数−的B点.见解析.【分析】(1)根据勾股定理计算;(2)根据勾股定理求出AD,根据题意求出BD;(3)根据勾股定理计算即可.【详解】∵这一个直角三角形的两条直角边分别为∴这个直角三角形斜边长为故答案为:∵∴在中,,则由勾股定理得,在和中∴∴(3)点A在数轴上表示的数是:,由勾股定理得,以O为圆心、OC为半径作弧交x轴于B,则点B即为所求,故答案为:,B点为所求.【点睛】本题考查的是勾股定理与数轴上的点的应用,掌握任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方是解题的关键.23、135°【分析】连接BD,根据勾股定理的逆定理得出△ABD为直角三角形,进而解答即可.【详解】解:如图,连接BD,∵BC=CD=2,∠C=90°,
在Rt△BCD中,BD2=BC2+DC2=8,∠BDC=∠DBC=45°.
在△ABD中,∵AB2+BD2=12+8=9=32=AD2,
∴△ABD为直角三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025水利工程检测合同范本
- 婚纱摄影师劳务合同范例
- 国开学习网《国际商法》考核任务1-3答案
- 买卖废钢材合同范例
- 与销售公司合同范例
- 机器合同范例简版
- 员工短暂离职合同范例
- 冲件厂合同范例
- 口腔门诊合伙合同范例
- 农村换地合同范例
- 2024年新高考全国1卷第16题说题课件
- 《新视野商务英语视听说》第四版-上-U10 Company Performance
- 2024年统编版新教材语文小学一年级上册第七单元检测题及答案
- 医疗器械合作意向书(2024版)
- 专升本英语智慧树知到答案2024年江苏财会职业学院
- 《冷机群控系统》课件
- 多媒体技术智慧树知到期末考试答案章节答案2024年武汉工商学院
- 2024年高级调饮师理论考试题库(含答案)
- 2024年广东省公需课《百县千镇万村高质量发展工程与城乡区域协调发展》考试答案
- 虫害防治年终报告总结
- 人教部编版二年级语文上册课后练习及参考答案
评论
0/150
提交评论