2022年黑龙江省哈尔滨市数学八上期末质量跟踪监视模拟试题含解析_第1页
2022年黑龙江省哈尔滨市数学八上期末质量跟踪监视模拟试题含解析_第2页
2022年黑龙江省哈尔滨市数学八上期末质量跟踪监视模拟试题含解析_第3页
2022年黑龙江省哈尔滨市数学八上期末质量跟踪监视模拟试题含解析_第4页
2022年黑龙江省哈尔滨市数学八上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在平面直角坐标系中,一只电子狗从原点O出发,按向上→向右→向下→向下→向右的方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,则A2018的坐标为()A.(337,1) B.(337,﹣1) C.(673,1) D.(673,﹣1)2.如图所示,在中,是边上的中线,,,,则的值为()A.3 B.4 C.5 D.63.已知,如图,在△ABC中,∠CAD=∠EAD,∠ADC=∠ADE,CB=5cm,BD=3cm,则ED的长为()A.2cm B.3cm C.5cm D.8cm4.如图,是直角三角形,,点、分别在、上,且.下列结论:①,②,③当时,是等边三角形,④当时,,其中正确结论的个数有()A.1个 B.2个 C.3个 D.4个5.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.6.如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上,当△ABC是直角三角形时,AC的值为()A.4 B.2 C.1 D.4或17.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35° B.45° C.55° D.60°8.下列图形中,是轴对称图形的个数是()A.1个 B.2个 C.3个 D.4个9.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是()A.2018 B.2019 C.2020 D.202110.若长度分别为的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.811.若等腰△ABC的周长为20,AB=8,则该等腰三角形的腰长为().A.8 B.6 C.4 D.8或612.在的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,把的一角折叠,若,则的度数为______.14.计算:的结果是__________________.15.计算:=_________.16.在实数0.23,4.,π,-,,0.3030030003…(每两个3之间增加1个0)中,无理数的个数是_________个.17.如果正方形的边长为4,为边上一点,,为线段上一点,射线交正方形的一边于点,且,那么的长为__________.18.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是_______.(只需填一个即可)三、解答题(共78分)19.(8分)垫球是排球队常规训练的重要项目之一,下列图表中的数据是运动员甲、乙、丙三人每人10次垫球测试的成绩,测试规则为每次连续接球10个,每垫球到位1个记1分,已知运动员甲测试成绩的中位数和众数都是1.运动员甲测试成绩统计表测试序号12345618910成绩(分)16816868(1)填空:______;______.(2)要从他们三人中选择一位垫球较为稳定的接球能手,你认为选谁更合适?为什么?20.(8分)为响应低碳号召,张老师上班的交通工具由自驾车改为骑自行车,张老师家距学校15千米,因为自驾车的速度是自行车速度的3倍,所以张老师每天比原来早出发小时,才能按原来时间到校,张老师骑自行车每小时走多少千米?21.(8分)如图,,,、在上,,,求证:.22.(10分)观察下列各式(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1…①根据以上规律,则(x-1)(x6+x5+x4+x3+x2+x+1)=______.②你能否由此归纳出一般性规律:(x-1)(xn+xn-1+…+x+1)=______.③根据②求出:1+2+22+…+234+235的结果.23.(10分)在中,,,点是上一点.(1)如图,平分.求证:;(2)如图,点在线段上,且,,求证:.(3)如图,,过点作交的延长线于点,连接,过点作交于,求证:.24.(10分)现要在三角地ABC内建一中心医院,使医院到A、B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请确定这个中心医院的位置.25.(12分)如图1,的边在直线上,,且的边也在直线上,边与边重合,且.(1)直接写出与所满足的数量关系:_________,与的位置关系:_______;(2)将沿直线向右平移到图2的位置时,交于点Q,连接,求证:;(3)将沿直线向右平移到图3的位置时,的延长线交的延长线于点Q,连接,试探究与的数量和位置关系?并说明理由.26.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED=10°,则∠DEC=度;(1)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图1,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH1+CH1=1AE1.

参考答案一、选择题(每题4分,共48分)1、C【分析】先写出前9个点的坐标,可得点的坐标变化特征:每三个点为一组,循环,进而即可得到答案.【详解】观察点的坐标变化特征可知:A1(0,1),A2(1,1)A3(1,0)A4(1,﹣1)A5(2,﹣1)A6(2,0)A7(2,1)A8(3,1)A9(3,0)…发现规律:每三个点为一组,循环,∵2018÷3=672…2,∴第2018个点是第673组的第二个点,∴A2018的坐标为(673,1).故选:C.【点睛】本题主要考查点的坐标,找出点的坐标的变化规律,是解题的关键.2、B【分析】首先过点A作AE⊥BC,交CB的延长线于E,由AE⊥BC,DB⊥BC,得出AE∥BD,由中位线的性质得出BC=BE,然后由∠ABC=120°,得出∠ABE=60°,∠BAE=30°,AB=2BE=2BC,即可得解.【详解】过点A作AE⊥BC,交CB的延长线于E,如图所示:∵AE⊥BC,DB⊥BC,∴AE∥BD,∵AD=CD,∴BD是△ACE的中位线,∴BC=BE,∵∠ABC=120°,∴∠ABE=60°,∴∠BAE=30°,∴AB=2BE=2BC,∵∴BC=4故答案为B.【点睛】此题主要考查平行线的判定与性质以及中位线的性质、特殊直角三角形的性质,熟练掌握,即可解题.3、A【解析】根据ASA得到△ACD≌△AED,再利用全等三角形的性质得到DE=CD即可求出.【详解】解:∵∠CAD=∠EAD,AD=AD,∠ADC=∠ADE,∴△ACD≌△AED,∴DE=CD=BC-BD=5-3=2,故选A.【点睛】本题考查了全等三角形的判定与性质,主要考查学生运用定理和性质进行推理的能力,题目比较好,难度适中.4、D【分析】①②构造辅助圆,利用圆周角定理解决问题即可;

③想办法证明BD=AD即可;

④想办法证明∠BAD=45°即可解决问题.【详解】解:如图,由题意:,以A为圆心AB为半径,作⊙A.∵

∴,故①②正确,当时,∠DAC=∠C,

∵∠BAD+∠DAC=90°,∠ABD+∠C=90°,

∴∠BAD=∠ABD,

∴BD=AD,

∵AB=AD,

∴AB=AD=BD,

∴△ABD是等边三角形,故③正确,

当时,∠ABD=∠ADB=67.5°,

∴∠BAD=180°−2×67.5°=45°,

∴∠DAE=∠BAD=45°,

∵AB=AE,AD=AD,

∴△BAD≌△EAD(SAS),∴,故④正确.

故选:D.【点睛】本题考查全等三角形的判定和性质,圆周角定理,等腰三角形的性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.5、B【分析】先由数轴观察a、b、c的正负和大小关系,然后根据不等式的基本性质对各项作出正确判断.【详解】由数轴可以看出a<b<0<c,因此,A、∵a<b,∴a﹣c<b﹣c,故选项错误;B、∵a<b,∴a+c<b+c,故选项正确;C、∵a<b,c>0,∴ac<bc,故选项错误;D、∵a<c,b<0,∴,故选项错误.故选B.【点睛】此题主要考查了不等式的基本性质及实数和数轴的基本知识,比较简单.6、D【分析】当点C在射线AN上运动,△ABC的形状由钝角三角形到直角三角形再到钝角三角形,画出相应的图形,根据运动三角形的变化,即可求出AC的值.【详解】解:如图,当△ABC是直角三角形时,有△ABC1,△ABC2两种情况,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2,在Rt△ABC1中,AB=2,∠A=60°,∴∠ABC1=30°,∴AC1=AB=1;在Rt△ABC2中,AB=2,∠A=60°,∴∠AC2B=30°,∴AC2=4,故选:D.【点睛】本题考查解直角三角形,构造直角三角形,掌握直角三角形中30°的角所对的直角边等于斜边的一半是解题关键.7、C【解析】试题分析:根据等腰三角形的三线合一的性质可直接得到AD平分∠BAC,AD⊥BC,因此∠DAC=∠BAD=35°,∠ADC=90°,从而可求得∠C=55°.故选C考点:等腰三角形三线合一8、C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【详解】解:第一个不是轴对称图形;第二个是轴对称图形;第三个是轴对称图形;第四个是轴对称图形;故是轴对称图形的个数是3个.故选C.【点睛】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.9、D【分析】根据勾股定理和正方形的面积公式,知“生长”1次后,以直角三角形两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,即所有正方形的面积和是2×1=2;“生长”2次后,所有的正方形的面积和是3×1=3,推而广之即可求出“生长”2020次后形成图形中所有正方形的面积之和.【详解】解:设直角三角形的是三条边分别是a,b,c.

根据勾股定理,得a2+b2=c2,

即正方形A的面积+正方形B的面积=正方形C的面积=1.正方形D的面积+正方形E的面积+正方形F的面积+正方形G的面积=正方形A的面积+正方形B的面积=正方形C的面积=1.

推而广之,即:每次“生长”的正方形面积和为1,“生长”了2020次后形成的图形中所有的正方形的面积和是2×1=2.

故选D.【点睛】此题考查了正方形的性质,以及勾股定理,其中能够根据勾股定理发现每一次得到的新的正方形的面积和与原正方形的面积之间的关系是解本题的关键.10、C【分析】根据三角形三边关系可得5﹣3<a<5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,由此可得,符合条件的只有选项C,故选C.【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.11、D【分析】AB=8可能是腰,也可能是底边,分类讨论,结合等腰三角形的两条腰相等计算出三边,并用三角形三边关系检验即可.【详解】解:若AB=8是腰,则底长为20-8-8=4,三边为4、8、8,能组成三角形,此时腰长为8;若AB=8是底,则腰长为(20-8)÷2=6,三边为6、6、8,能组成三角形,此时腰长为6;综述所述:腰长为8或6.故选:D.【点睛】本题考查等腰三角形的性质和三角形三边的关系,分类讨论是关键.12、D【解析】直接利用轴对称图形的定义判断得出即可.【详解】解:A.是轴对称图形,不合题意;B.是轴对称图形,不合题意;C.是轴对称图形,不合题意;D.不是轴对称图形,符合题意;故选:D.【点睛】本题主要考查轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.二、填空题(每题4分,共24分)13、65°【分析】根据折叠的性质得到∠3=∠5,∠4=∠6,利用平角的定义有∠3+∠5+∠1+∠2+∠4+∠6=360°,则2∠3+2∠4+∠1+∠2=360°,而∠1+∠2=130°,可计算出∠3+∠4=115°,然后根据三角形内角和定理即可得到∠A的度数.【详解】如图,∵△ABC的一角折叠,∴∠3=∠5,∠4=∠6,而∠3+∠5+∠1+∠2+∠4+∠6=360°,∴2∠3+2∠4+∠1+∠2=360°.∵∠1+∠2=130°,∴∠3+∠4=115°,∴∠A=180°﹣∠3﹣∠4=65°.故答案为65°.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了折叠的性质.作出辅助线,把图形补充完整是解题的关键.14、1【分析】利用二次根式的计算法则正确计算即可.【详解】解:故答案为:1.【点睛】本题考查的是二次根式的乘除混合运算,要正确使用计算法则:,.15、【分析】先利用二次根式的性质,再判断的大小去绝对值即可.【详解】因为,所以故答案为【点睛】此题考查的是二次根式的性质和去绝对值.16、3【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:在所列的实数中,无理数有π,,0.3030030003…(每两个3之间增加1个0)这3个,

故答案为:3【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.17、或【分析】因为BM可以交AD,也可以交CD.分两种情况讨论:①BM交AD于F,则△ABE≌△BAF.推出AF=BE=3,所以FD=EC,连接FE,则四边形ABEF为矩形,所以M为该矩形的对角线交点,所以BM=AC的一半,利用勾股定理得到AE等于5,即可求解;②BM交CD于F,则BF垂直AE(通过角的相加而得)且△BME∽△ABE,则,所以求得BM等于.【详解】分两种情况讨论:①BM交AD于F,∵∠ABE=∠BAF=90°,AB=BA,AE=BF,∴△ABE≌△BAF(HL)∴AF=BE,∵BE=3,∴AF=3,∴FD=EC,连接FE,则四边形ABEF为矩形,∴BM=AE,∵AB=4,BE=3,∴AE==5,∴BM=;②BM交CD于F,∵△ABE≌△BCF,∴∠BAE=∠CBF,∵∠BAE+∠BEA=90°,∴∠BEM+∠EBM=90°,∴∠BME=90°,即BF垂直AE,∴△BME∽△ABE,∴,∵AB=4,AE=5,BE=3,∴BM=.综上,故答案为:或【点睛】本题考查了正方形的性质和勾股定理,以及三角形的全等和相似,解题的关键是熟知相似三角形的判定与性质.18、∠A=∠F(答案不唯一)【详解】要判定△ABC≌△FDE,已知AC=FE,AD=BF,则AB=CF,具备了两组边对应相等,故添加夹角∠A=∠F,利用SAS可证全等;或添加AC∥EF得夹角∠A=∠F,利用SAS可证全等;或添加BC=DE,利用SSS可证全等.三、解答题(共78分)19、(1)1,1;(2)选乙运动员更合适,理由见解析.【分析】(1)观察表格,根据众数的定义即可求解;(2)先分别求出三人的方差,再根据方差的意义求解即可.【详解】解:(1)∵运动员甲测试成绩的众数是1,∴数据1出现的次数最多,∵甲测试成绩中6分与8分均出现了3次,而一共测试10次,∴甲测试成绩中1分出现的次数为4次,而1分已经出现2次,∴.故答案为:1,1;(2)甲成绩重新排列为:6、6、6、1、1、1、1、8、8、8,∴,,,,,,∵,,∴选乙运动员更合适.【点睛】本题考查方差、条形图、折线图、中位数、众数、平均数等知识,熟练掌握基本概念以及运用公式求出平均数和方差是解题的关键.20、张老师骑自行车每小时走15千米【分析】设张老师骑自行车的速度为x千米/小时,则自驾车的速度为3x/小时,根据时间=路程÷速度结合骑自行车比自驾车多用小时,可得到关于x的分式方程,解之经检验后即可得出结论.【详解】设张老师骑自行车的速度为x千米/小时,则自驾车的速度为3x/小时,根据题意得:,解得:,经检验,是所列分式方程的解,且符合题意.答:张老师骑自行车每小时走15千米.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21、见解析【分析】根据已知条件来证明两个三角形全等(AAS),即可证明.【详解】证明:∵,,∴,∵∴,在△ABF和△DCE中,∴∴【点睛】本题考查的是全等三角形的判断和性质.22、(1)x7-1;(2)xn+1-1;(3)236-1.【解析】①观察已知各式,得到一般性规律,化简原式即可;②原式利用①中得出的规律化简即可得到结果;③原式变形后,利用②中得出的规律化简即可得到结果.【详解】解:①根据题意得:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②根据题意得:(x﹣1)(xn+xn﹣1+…+x+1)=xn+1﹣1;③原式=(2﹣1)(1+2+22+…+234+235)=236﹣1.故答案为①x7﹣1;②xn+1﹣1;③236﹣1【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.23、(1)见解析;(2)见解析;(3)见解析【分析】(1)延长AC至E,使CE=CD,利用AAS证出△BAD≌△EAD,从而得出AB=AE,即可证出结论;(2)过点C作CF⊥EC交AD的延长线于点F,连接BF,先利用SAS证出△ACE≌△BCF,从而证出AE=BF,∠CEA=∠CFB,再证出∠EFB=90°,利用30°所对的直角边是斜边的一半即可证出结论;(3)过点C作CE⊥AM于M,先利用AAS证出△CNA≌△CMB,即可证出CN=CM,根据等腰三角形的性质可得NE=EM,然后利用AAS证出△CED≌△BMD,从而得出ED=DM,然后根据线段的关系即可得出结论.【详解】解:(1)延长AC至E,使CE=CD∵,∴∠ECD=180°-∠ACB=90°,∠B=∠CAB=(180°-∠ACB)=45°∴△CDE为等腰三角形∴∠E=45°∴∠B=∠E∵平分∴∠BAD=∠EAD在△BAD和△EAD中∴△BAD≌△EAD∴AB=AE∵AE=AC+CE=AC+CD∴AB=AC+CD(2)过点C作CF⊥EC交AD的延长线于点F,连接BF∵∠CED=45°∴△CEF为等腰直角三角形∴CE=CF,∠CFE=∠CEF=45°∵△ABC为等腰直角三角形∴∠ACB=90°,CA=CB,∴∠ACE+∠ECB=90°,∠BCF+∠ECB=90°∴∠ACE=∠BCF在△ACE和△BCF中∴△ACE≌△BCF∴AE=BF,∠CEA=∠CFB∵∠CEA=180°-∠CEF=135°∴∠CFB=135°∴∠EFB=∠CFB-∠CFE=90°在Rt△EFB中,∠BEF=30°∴BE=2BF∴BE=2AE(3)过点C作CE⊥AM于M,∵△ABC为等腰直角三角形∴∠ACB=90°,CA=CB∵CN⊥CM,BM⊥AM∴∠NCM=90°,∠BMA=90°∴∠ACN+∠NCB=90°,∠BCM+∠NCB=90°,∴∠ACN=∠BCM∴∠CNA=∠NCM+∠CMN=90°+∠CMN=∠CMB在△CNA和△CMB中∴△CNA≌△CMB∴CN=CM∴△CNM为等腰直角三角形∴NE=EM在△CED和△BMD中∴△CED≌△BMD∴ED=DM∴EM=2DM∴NE=2DM∴DN=NE+ED=3DM【点睛】此题考查的是等腰直角三角形的性质、全等三角形的判定及性质和直角三角形的性质,掌握等腰直角三角形的性质、构造全等三角形的方法、全等三角形的判定及性质和30°所对的直角边是斜边的一半是解决此题的关键.24、作图见解析.【解析】根据线段垂直平分线性质作出AB的垂直平分线,根据角平分线性质作出∠BAC的角平分线,即可得出答案.解:

作AB的垂直平分线EF,作∠BAC的角平分线AM,两线交于P,

则P为这个中心医院的位置.25、(1)AB=AP

,AB⊥AP

;(2)证明见解析;(3)AP=BQ,AP⊥BQ,证明见解析.【分析】(1)根据等腰直角三角形的性质可得∠BAP=45°+45°=90°,根据垂直平分线的性质可得AB=AP;(2)要证BQ=AP,可以转化为证明Rt△BCQ≌Rt△ACP;(3)类比(2)的证明就可以得到,证明垂直时,延长QB交AP于点N,则∠PBN=∠CBQ,借助全等得到的角相等,得出∠APC+∠PBN=90°,进一步可得出结论..【详解】解:(1)∵AC⊥BC且AC=BC,

∴△ABC为等腰直角三角形,∠ACB=90°,

∴∠BAC=∠ABC=(180°-∠ACB)=45°,

∵,∠EFP=180°-∠ACB=90°,∴△EFP为等腰直角三角形,BC=AC=CP,∴∠PEF=45°,AB=AP,

∴∠BAP=45°+45°=90°,

∴AB=AP且AB⊥AP;

故答案为:AB=AP

,AB⊥AP

(2)证明:

∵EF=FP,EF⊥FP

∴∠EPF=45°.

∵AC⊥BC,

∴∠CQP=∠EPF=45°

∴CQ=CP

Rt△BCQ和Rt△ACP中,∴Rt△BCQ≌Rt△ACP

(SAS).

∴AP=BQ.

(3)AP=BQ,AP⊥BQ,理由如下:

∵EF=FP,EF⊥FP,

∴∠EPF=45°.

∴∠CPQ=∠EPF=45°

∵AC⊥BC

∴CQ=CP

Rt△BCQ和Rt△ACP中,

∴Rt△BCQ≌Rt△ACP

(SAS).

∴AP=BQ,∠BQC=∠APC,如图,延长QB交AP于点N,

则∠PBN=∠CBQ,在Rt△BCQ中,∠BQC+∠CBQ=90°,

∴∠APC+∠PBN=90°,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论