版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,是数轴上的四个点,这四个点中最适合表示的是()A.点 B.点 C.点 D.点2.下列各式中正确的是()A. B. C. D.3.下列四个实数中,无理数是()A.3.14 B.﹣π C.0 D.4.如图,AC与BD交于O点,若,用“SAS”证明≌,还需A. B.C. D.5.下列尺规作图分别表示:①作一个角的平分线;②作一个角等于已知角;③作一条线段的垂直平分线.其中作法正确的是()①②③A.①② B.①③ C.②③ D.①②③6.如图点在内,且到三边的距离相等.若,则等于()A. B. C. D.7.如图,已知:,点、、…在射线上,点、、…在射线上,,、…均为等边三角形,若,则的边长为()A.20 B.40 C. D.8.如图,在中,,,点、分别在边、上,,点是边上一动点,当的值最小时,,则为()A. B. C. D.9.若实数满足,则的值是()A. B.2 C.0 D.110.如图,△ABM与△CDM是两个全等的等边三角形,MA⊥MD.有下列四个结论:(1)∠MBC=25°;(2)∠ADC+∠ABC=180°;(3)直线MB垂直平分线段CD;(4)四边形ABCD是轴对称图形.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个11.点P(3,)关于x轴对称的点的坐标是()A.(3,) B.(,) C.(3,4) D.(,4)12.一个多边形的每一个外角都等于36,则该多边形的内角和等于()A.1080° B.900° C.1440° D.720°二、填空题(每题4分,共24分)13.如图,四边形中,,垂足为,则的度数为____.14.已知x,y满足,则______.15.一次函数的图象经过(-1,0)且函数值随自变量增大而减小,写出一个符合条件的一次函数解析式__________.16.小明家1至6月份的用水量统计如图所示,根据图中的数据可知,5月份的用水量比3月份的用水量多_____吨.17.若分式值为0,则=______.18.在平面直角坐标系中,点在第三象限,则m的取值范围是______.三、解答题(共78分)19.(8分)矩形ABCD中平分交BC于平分交AD于F.(1)说明四边形AECF为平行四边形;(2)求四边形AECF的面积.20.(8分)如图,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B(0,m)、C(0,n)两点,且m、n(m>n)满足方程组的解.(1)求证:AC⊥AB;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,在直线BD上寻找点P,使以A、B、P三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.21.(8分)解下列分式方程:(1)(2).22.(10分)如图,已知点D在△ABC的边AB上,且AD=CD,(1)用直尺和圆规作∠BDC的平分线DE,交BC于点E(不写作法,保留作图痕迹);(2)在(1)的条件下,判断DE与AC的位置关系,并写出证明过程.23.(10分)老陶手机店销售型和型两种型号的手机,销售一台型手机可获利元,销售一台型手机可获利元.手机店计划一次购进两种型号的手机共台,其中型手机的进货量不超过型手机的倍设购进型手机台,这台手机的销售总利润为元.(1)求与的关系式.(2)该手机店购进型、型手机各多少台,才能使销售利润最大.24.(10分)如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,4),交x轴于点B.(1)求直线AB的表达式和点B的坐标;(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.①用含n的代数式表示△ABP的面积;②当S△ABP=8时,求点P的坐标;③在②的条件下,以PB为斜边在第一象限作等腰直角△PBC,求点C的坐标.25.(12分)在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1).(1)求证:∠BAD=∠EDC;(2)若点E关于直线BC的对称点为M(如图2),连接DM,AM.求证:DA=AM.26.在中,,,是的角平分线.(1)如图1,求证:;(2)如图2,作的角平分线交线段于点,若,求的面积;(3)如图3,过点作于点,点是线段上一点(不与重合),以为一边,在的下方作,交延长线于点,试探究线段,与之间的数量关系,并说明理由.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据进行判断即可.【详解】∵∴∴点最适合表示故答案为:A.【点睛】本题考查了用数轴上的点表示无理数的问题,掌握要表示的数的大小范围是解题的关键.2、D【分析】依据平方根、立方根意义将各式化简依次判断即可.【详解】,故A错误;,故B错误;无意义,故C错误;正确.故此题选择D.【点睛】此题考察立方根、平方根意义,正确理解意义才能正确判断.3、B【分析】根据无理数的定义,可得答案.【详解】解:3.14,0,,都是有理数;﹣π是无理数.故选:B.【点睛】本题考查无理数的定义与形式,理解掌握无理数的定义是关键.4、B【分析】根据全等三角形的判定定理逐个判断即可.【详解】A、根据条件,,不能推出≌,故本选项错误;B、在和中,≌,故本选项正确;C、,,,符合全等三角形的判定定理ASA,不符合全等三角形的判定定理SAS,故本选项错误;D、根据和不能推出≌,故本选项错误;故选B.【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.5、A【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线的作法进而判断即可得出答案.【详解】解:①作一个角的平分线的作法正确;
②作一个角等于已知角的方法正确;
③作一条线段的垂直平分线,缺少另一个交点,故作法错误;
故选:A.【点睛】本题主要考查了基本作图,正确把握作图方法是解题关键.6、A【分析】根据到角的两边距离相等的点在角的平分线上判断出点O是三角形三条角平分线的交点,再根据三角形的内角和定理求出∠ABC+∠ACB,然后求出∠OBC+∠OCB,再利用三角形的内角和定理列式计算即可得解.【详解】∵O到三边AB、BC、CA的距离OF=OD=OE,∴点O是三角形三条角平分线的交点,∵,∴∠ABC+∠ACB=180−50=130,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×130=65,在△OBC中,∠BOC=180−(∠OBC+∠OCB)=180−65=115.故选:A.【点睛】本题考查了到角的两边距离相等的点在角的平分线上的性质,三角形的内角和定理,要注意整体思想的利用.7、C【分析】根据等边三角形的性质和,可求得,进而证得是等腰三角形,可求得的长,同理可得是等腰三角形,可得,同理得规律,即可求得结果.【详解】解:∵,是等边三角形,∴,∴,∴,则是等腰三角形,∴,∵,∴=1,,同理可得是等腰三角形,可得=2,同理得、,根据以上规律可得:,故选:C.【点睛】本题属于探索规律题,主要考查了等边三角形的性质、等腰三角形的判定与性质,掌握等边三角形的三个内角都是60°、等角对等边和探索规律并归纳公式是解题的关键.8、B【分析】延长至点,使,过点作于点,交于点,则此时的值最小.最后根据直角三角形的边角关系求解即可.【详解】如图,延长至点,使,过点作于点,交于点,则此时的值最小.在中,,.,,,.,.,,.,,.在中,,.,,.故选B.【点睛】本题考查了最短路径问题,涉及到最短路径问题,一般要考虑线段的性质定理,结合轴对称变换来解决,因此利用轴对称找到对称点是解题的关键.9、A【分析】根据题意由,变形可得,根据非负性进行计算可得答案.【详解】解:由,变形可得,根据非负性可得:解得:所以.故选:A.【点睛】本题考查平方和算术平方根的非负性,注意掌握和运用平方和算术平方根的非负性是解题的关键.10、C【详解】(1)∵△ABM≌△CDM,△ABM、△CDM都是等边三角形,∴∠ABM=∠AMB=∠BAM=∠CMD=∠CDM=∠DCM=60°,AB=BM=AM=CD=CM=DM,又∵MA⊥MD,∴∠AMD=90°,∴∠BMC=360°−60°−60−90°=150°,又∵BM=CM,∴∠MBC=∠MCB=15°;(2)∵AM⊥DM,∴∠AMD=90°,又∵AM=DM,∴∠MDA=∠MAD=45°,∴∠ADC=45°+60°=105°,∠ABC=60°+15°=75°,∴∠ADC+∠ABC=180°;(3)延长BM交CD于N,∵∠NMC是△MBC的外角,∴∠NMC=15°+15°=30°,∴BM所在的直线是△CDM的角平分线,又∵CM=DM,∴BM所在的直线垂直平分CD;(4)根据(2)同理可求∠DAB=105°,∠BCD=75°,∴∠DAB+∠ABC=180°,∴AD∥BC,又∵AB=CD,∴四边形ABCD是等腰梯形,∴四边形ABCD是轴对称图形.故(2)(3)(4)正确.故选C.11、C【分析】根据点坐标关于x轴对称的变换规律即可得.【详解】点坐标关于x轴对称的变换规律:横坐标相同,纵坐标互为相反数,,点P关于x轴对称的点的坐标是,故选:C.【点睛】本题考查了点坐标与轴对称变化,熟练掌握点坐标关于x轴对称的变换规律是解题关键.12、C【解析】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故选C.二、填空题(每题4分,共24分)13、45°【解析】由题意利用四边形内角和为360°以及邻补角的定义进行分析即可得出的度数.【详解】解:∵四边形中,,,∴,∴.故答案为:45°.【点睛】本题考查四边形内角和定理,利用四边形内角和为360°以及邻补角的定义进行求解是解题的关键.14、【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【详解】解:根据题意得:解得:则xy=-1.故答案为:-1【点睛】本题考查了非负数的性质:几个非负数的和为2时,这几个非负数都为2.15、,满足即可【分析】根据题意假设解析式,因为函数值随自变量增大而减小,所以解析式需满足,再代入(-1,0)求出a和b的等量关系即可.【详解】设一次函数解析式代入点(-1,0)得,解得所以我们令故其中一个符合条件的一次函数解析式是.故答案为:.【点睛】本题考察了一次函数的解析式,根据题意得出a和b的等量关系,列出其中一个符合题意的一次函数解析式即可.16、1【分析】根据折线统计图给出的数据进行相减即可.【详解】解:由折线统计图知,5月份用的水量是6吨,1月份用的水量是1吨,则5月份的用水量比1月份的用水量多1吨;故答案为1.【点睛】本题主要考查折线统计图,解题的关键是根据折线统计图得出具体的数据.17、1【分析】分式的值为零,分子等于零且分母不等于零.【详解】当=2时,=2,x≠2解得x=1.故答案是:1.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.18、【解析】点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得,求不等式的解即可.【详解】解:∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即,解得,故答案为:.【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,解决的关键是记住各象限内点的坐标的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).三、解答题(共78分)19、(1)见解析;(2)30cm2【解析】试题分析:(1)由四边形ABCD是矩形可得AD∥BC(即AF∥CE),AB∥CD,由此可得∠BAC=∠ACD,结合AE平分∠BAC,CF平分∠ACD可得∠EAC=∠FCA,即可得到AE∥CF,从而可得四边形AECF是平行四边形;(2)如图,过点E作EO⊥AC于点O,结合∠B=90°及AE平方∠BAC可得EO=EB,证Rt△ABE≌Rt△AOE可得AO=AB=6,在Rt△ABC中由勾股定理易得AC=10,从而可得OC=4,设CE=x,则EO=BE=BC-CE=8-x,这样在Rt△OEC中由勾股定理建立方程,解方程即可求得CE的值,这样就可求出四边形AECF的面积了.试题解析:(1)∵四边形ABCD是矩形,∴AD∥BC(即AF∥CE),AB∥CD,∴∠BAC=∠ACD,又∵AE平分∠BAC,CF平分∠ACD,∴∠EAC=∠FCA,∴AE∥CF,∴四边形AECF是平行四边形;(2)过点E作EO⊥AC于点O,∵∠B=90°,AE平分∠BAC,∴EO=BO,∵AE=AE,∴Rt△ABE≌Rt△AOE,∴AO=AB=6,∵在Rt△ABC,AC=,∴OC=AC-AO=4(cm),设CE=x,则EO=BE=BC-CE=8-x,∴在Rt△OEC中由勾股定理可得:,解得:,∴EC=5,∴S四边形AECF=CE·AB=5×6=30(cm2).点睛:本题第2小题的解题关键是:通过作EO⊥AC于点O,证得EO=BE,AO=AB,即可在Rt△CEO中由勾股定理建立方程解得CE的长,这样就可由S平行四边形AECF=CE·AB来求出其面积了.20、(1)见解析;(2);(3)点P的坐标为:(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+)【分析】(1)先解方程组得出m和n的值,从而得到B,C两点坐标,结合A点坐标算出AB2,BC2,AC2,利用勾股定理的逆定理即可证明;(2)过D作DF⊥y轴于F,根据题意得到BF=FC,F(0,1),设直线AC:y=kx+b,利用A和C的坐标求出表达式,从而求出点D坐标;(3)分AB=AP,AB=BP,AP=BP三种情况,结合一次函数分别求解.【详解】解:(1)∵,得:,∴B(0,3),C(0,﹣1),∵A(﹣,0),B(0,3),C(0,﹣1),∴OA=,OB=3,OC=1,∴AB2=AO2+BO2=12,AC2=AO2+OC2=4,BC2=16∴AB2+AC2=BC2,∴∠BAC=90°,即AC⊥AB;(2)如图1中,过D作DF⊥y轴于F.∵DB=DC,△DBC是等腰三角形∴BF=FC,F(0,1),设直线AC:y=kx+b,将A(﹣,0),C(0,﹣1)代入得:直线AC解析式为:y=x-1,将D点纵坐标y=1代入y=x-1,∴x=-2,∴D的坐标为(﹣2,1);(3)点P的坐标为:(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+)设直线BD的解析式为:y=mx+n,直线BD与x轴交于点E,把B(0,3)和D(﹣2,1)代入y=mx+n,∴,解得,∴直线BD的解析式为:y=x+3,令y=0,代入y=x+3,可得:x=,∵OB=3,∴BE=,∴∠BEO=30°,∠EBO=60°∵AB=,OA=,OB=3,∴∠ABO=30°,∠ABE=30°,当PA=AB时,如图2,此时,∠BEA=∠ABE=30°,∴EA=AB,∴P与E重合,∴P的坐标为(﹣3,0),当PA=PB时,如图3,此时,∠PAB=∠PBA=30°,∵∠ABE=∠ABO=30°,∴∠PAB=∠ABO,∴PA∥BC,∴∠PAO=90°,∴点P的横坐标为﹣,令x=﹣,代入y=x+3,∴y=2,∴P(﹣,2),当PB=AB时,如图4,∴由勾股定理可求得:AB=2,EB=6,若点P在y轴左侧时,记此时点P为P1,过点P1作P1F⊥x轴于点F,∴P1B=AB=2,∴EP1=6﹣2,∴FP1=3﹣,令y=3﹣代入y=x+3,∴x=﹣3,∴P1(﹣3,3﹣),若点P在y轴的右侧时,记此时点P为P2,过点P2作P2G⊥x轴于点G,∴P2B=AB=2,∴EP2=6+2,∴GP2=3+,令y=3+代入y=x+3,∴x=3,∴P2(3,3+),综上所述,当A、B、P三点为顶点的三角形是等腰三角形时,点P的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+).【点睛】本题考查了解二元一次方程组,勾股定理的逆定理,含30°的直角三角形,等腰三角形的性质,一次函数的应用,知识点较多,难度较大,解题时要注意分类讨论.21、(1)无解(2)【解析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)去分母得:2x-2+3x+3=6,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:1-2x=2x-4,解得:x=,经检验x=是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22、(1)见解析;(2)DE∥AC,理由见解析【分析】(1)根据角平分线的尺规作图可得;(2)先由AD=CD知∠A=∠DCA,继而得∠BDC=∠A+∠DCA=2∠A,再由DE平分∠BDC知∠BDC=2∠BDE,从而得∠BDE=∠A,从而得证.【详解】解:(1)如图所示,DE即为所求.(2)DE∥AC.理由如下:因为AD=CD,所以∠A=∠DCA,所以∠BDC=∠A+∠DCA=2∠A,因为DE平分∠BDC,所以∠BDC=2∠BDE,所以∠BDE=∠A,所以DE∥AC.【点睛】本题考查尺规作图、角平分线的性质和平行线的判定,解题的关键是掌握尺规作图、角平分线的性质和平行线的判定.23、(1),(2)台型手机,台型手机.【分析】(1)由总利润等于销售,型手机获得的利润之和,从而可得答案;(2)由型手机的进货量不超过型手机的倍列不等式求解的范围,再利用函数的性质求解最大的销售利润即可得到答案.【详解】解:(1)由题意得:.(2)根据题意得:,解得,,,随的增大而减小,为正整数,当时,取最大值,则,即商店购进台型手机,台型手机才能使销售利润最大.【点睛】本题考查的是一次函数的应用,一元一次不等式的应用,利用函数的性质求最大利润,掌握以上知识是解题的关键.24、(1)y=﹣x+1,点B的坐标为(1,0);(2)①2n﹣1;②(2,3);③3,1).【分析】(1)把点A的坐标代入直线解析式可求得b=1,则直线的解析式为y=﹣x+1,令y=0可求得x=1,故此可求得点B的坐标;(2)①由题l垂直平分OB可知OE=BE=2,将x=2代入直线AB的解析式可求得点D的坐标,设点P的坐标为(2,n),然后依据S△APB=S△APD+S△BPD可得到△APB的面积与n的函数关系式为S△APB=2n﹣1;②由S△ABP=8得到关于n的方程可求得n的值,从而得到点P的坐标;③如图1所示,过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C的坐标为(p,q),先证明△PCM≌△CBN,得到CM=BN,PM=CN,然后由CM=BN,PM=CN列出关于p、q的方程组可求得p、q的值;如图2所示,同理可求得点C的坐标.【详解】(1)∵把A(0,1)代入y=﹣x+b得b=1∴直线AB的函数表达式为:y=﹣x+1.令y=0得:﹣x+1=0,解得:x=1∴点B的坐标为(1,0).(2)①∵l垂直平分OB,∴OE=BE=2.∵将x=2代入y=﹣x+1得:y=﹣2+1=2.∴点D的坐标为(2,2).∵点P的坐标为(2,n),∴PD=n﹣2.∵S△APB=S△APD+S△BPD,∴S△ABP=PD•OE+PD•BE=(n﹣2)×2+(n﹣2)×2=2n﹣1.②∵S△ABP=8,∴2n﹣1=8,解得:n=3.∴点P的坐标为(2,3).③如图1所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C(p,q).∵△PBC为等腰直角三角形,PB为斜边,∴PC=CB,∠PCM+∠MCB=90°.∵CM⊥l,BN⊥CM,∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.∴∠MPC=∠NCB.在△PCM和△CBN中,,∴△PCM≌△CBN.∴CM=BN,PM=CN.∴,解得.∴点C的坐标为(3,1).如图2所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C(p,q).∵△PBC为等腰直角三角形,PB为斜边,∴PC=CB,∠PCM+∠MCB=90°.∵CM⊥l,BN⊥CM,∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.∴∠MPC=∠NCB.在△PCM和△CBN中,,∴△PCM≌△CBN.∴CM=BN,PM=CN.∴,解得.∴点C的坐标为(0,2)舍去.综上所述点C的坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 图书馆卫生间管理规定
- 纪录片编剧服务协议
- 体育运动区房产交易样板
- 研发部门休假管理方案
- 学校地暖工程服务合同
- 旅游推广记者站管理办法
- 电力设施电子招投标竞争格局
- 精密仪器电焊工招聘合同
- 墙绘施工合同公园景观墙绘
- 房屋户外景观水景施工合同
- 传染病防治规划实施细则
- 第五单元中国特色社会主义社会建设单元测试-2023-2024学年中职高教版(2023)中国特色社会主义
- 汽车计划员岗位职责
- 电大财务大数据分析编程作业2
- 第八届全国红十字应急救护大赛理论试题库大全-下(多选题)
- 2024年13起典型火灾案例及消防安全知识专题培训
- 五年级道德与法治下册第一单元单元整体教学设计
- 小班体育活动《跳圈圈》含反思
- 鞋子试穿报告
- 大学生职业生涯规划书数学与应用数学
- 漠河舞厅赏析
评论
0/150
提交评论