近十年湖北中考数学真题及答案2024_第1页
近十年湖北中考数学真题及答案2024_第2页
近十年湖北中考数学真题及答案2024_第3页
近十年湖北中考数学真题及答案2024_第4页
近十年湖北中考数学真题及答案2024_第5页
已阅读5页,还剩184页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年湖北中考数学试题及答案一、选择题(每小题3分,共30分)1.在生产生活中,正数和负数都有现实意义.例如收入20元记作元,则支出10元记作()A.元 B.元 C.元 D.元2.如图,是由4个相同的正方体组成的立方体图形,其主视图是()A. B. C. D.3.的值是()A. B. C. D.4.如图,直线,已知,则()A. B. C. D.5.不等式的解集在数轴上表示为()A. B.C. D.6.下列各事件是,是必然事件的是()A.掷一枚正方体骰子,正面朝上恰好是3 B.某同学投篮球,一定投不中C.经过红绿灯路口时,一定是红灯 D.画一个三角形,其内角和为7.《九章算术》中记载这样一个题:牛5头和羊2只共值10金,牛2头和羊5只共值8金,问牛和羊各值多少金?设每头牛值金,每只羊值金,可列方程为()A. B.C. D.8.为半圆的直径,点为半圆上一点,且.①以点为圆心,适当长为半径作弧,交于;②分别以为圆心,大于为半径作弧,两弧交于点;③作射线,则()A. B. C. D.9.平面坐标系中,点的坐标为,将线段绕点顺时针旋转,则点的对应点的坐标为()A. B. C. D.10.抛物线的顶点为,抛物线与轴的交点位于轴上方.以下结论正确的是()A. B. C. D.二、填空题(每小题3分,共15分)11.写一个比大的数______.12.中国古代杰出的数学家祖冲之、刘徽、赵爽、秦九韶、杨辉,从中任选一个,恰好是赵爽的概率是______.13.计算:______.14.铁的密度约为,铁的质量与体积成正比例.一个体积为的铁块,它的质量为______.15.等边三角形,分别延长,到点,使,连接,,连接并延长交于点.若,则______,______.三、解答题(75分)16.计算:17.已知:如图,E,F为□ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.18.小明为了测量树的高度,经过实地测量,得到两个解决方案:方案一:如图(1),测得地与树相距10米,眼睛处观测树的顶端的仰角为:方案二:如图(2),测得地与树相距10米,在处放一面镜子,后退2米到达点,眼睛在镜子中恰好看到树的顶端.已知小明身高1.6米,试选择一个方案求出树的高度.(结果保留整数,)19.为促进学生全面发展,学校开展了丰富多彩的体育活动.为了解学生引体向上的训练成果,调查了七年级部分学生,根据成绩,分成了四组,制成了不完整的统计图.分组:,,,.(1)组的人数为______:(2)七年级400人中,估计引体向上每分钟不低于10个有多少人?(3)从众数、中位数、平均数中任选一个,说明其意义.20.一次函数经过点,交反比例函数于点.(1)求;(2)点在反比例函数第一象限的图象上,若,直接写出的横坐标的取值范围.21.中,,点在上,以为半径的圆交于点,交于点.且.(1)求证:是的切线.(2)连接交于点,若,求弧长.22.学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m,篱笆长.设垂直于墙的边长为米,平行于墙的边为米,围成的矩形面积为.(1)求与与的关系式.(2)围成的矩形花圃面积能否为,若能,求出的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时的值.23.如图,矩形中,分别在上,将四边形沿翻折,使对称点落在上,的对称点为交于.(1)求证:.(2)若为中点,且,求长.(3)连接,若为中点,为中点,探究与大小关系并说明理由.24.如图1,二次函数交轴于和,交轴于.(1)求的值.(2)为函数图象上一点,满足,求点的横坐标.(3)如图2,将二次函数沿水平方向平移,新的图象记为与轴交于点,记,记顶点横坐标为.①求与的函数解析式.②记与轴围成的图象为与重合部分(不计边界)记为,若随增加而增加,且内恰有2个横坐标与纵坐标均为整数的点,直接写出的取值范围.

参考答案一、选择题(每小题3分,共30分)【1题答案】【答案】B【2题答案】【答案】A【3题答案】【答案】D【4题答案】【答案】B【5题答案】【答案】A【6题答案】【答案】D【7题答案】【答案】A【8题答案】【答案】C【9题答案】【答案】B【10题答案】【答案】C二、填空题(每小题3分,共15分)【11题答案】【答案】0【12题答案】【答案】【13题答案】【答案】1【14题答案】【答案】79【15题答案】【答案】①.##30度②.##三、解答题(75分)【16题答案】【答案】3【17题答案】【答案】证明见解析.【18题答案】【答案】树的高度为8米【19题答案】【答案】(1)12(2)180(3)见解析【20题答案】【答案】(1),,;(2).【21题答案】【答案】(1)见解析(2)弧的长为.【22题答案】【答案】(1);(2)能,(3)的最大值为800,此时【23题答案】【答案】(1)见详解(2)(3)【24题答案】【答案】(1);(2)或;(3)①;②取值范围为或.

2023年湖北中考数学真题及答案满分120分,考试时限120分钟.一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.的倒数是()A. B. C. D.2.下列几何体中,三视图的三个视图完全相同的几何体是()A. B. C. D.3.下列计算正确的是()A. B. C. D.4.任意掷一枚均匀的小正方体色子,朝上点数是偶数的概率为()A. B. C. D.5.如图,将四根木条用钉子钉成一个矩形框架,然后向左扭动框架,观察所得四边形变化.下面判断错误的是()A.四边形由矩形变为平行四边形 B.对角线的长度减小C.四边形的面积不变 D.四边形的周长不变6.为了落实“双减”政策,进一步丰富文体活动,学校准备购进一批篮球和足球,已知每个篮球价格比每个足球的价格多20元,用1500元购进篮球的数量比用800元购进足球的数量多5个,如果设每个足球的价格为x元,那么可列方程为()A. B. C. D.7.如图所示,有一天桥高为5米,是通向天桥的斜坡,,市政部门启动“陡改缓”工程,决定将斜坡的底端C延伸到D处,使,则的长度约为(参考数据:)()A.米 B.米 C.米 D.米8.如图,己知点C为圆锥母线的中点,为底面圆的直径,,,一只蚂蚁沿着圆锥的侧面从A点爬到C点,则蚂蚁爬行的最短路程为()A.5 B. C. D.9.如图,是的外接圆,弦交于点E,,,过点O作于点F,延长交于点G,若,,则的长为()A. B.7 C.8 D.10.已知点在直线上,点在抛物线上,若且,则的取值范围是()A. B.C. D.二、填空题(本题有6个小题,每小题3分,共18分)11.2023年5月30日上午,我国载人航天飞船“神舟十六号”发射圆满成功,与此同时,中国载人航天办公室也宣布计划在2030年前实现中国人首次登陆距地球平均距离为万千米的月球,将用科学记数法表示为___________________.12.若,,则的值是___________________.13.一副三角板按如图所示放置,点A上,点F在上,若,则___________________.14.用火柴棍拼成如下图案,其中第①个图案由4个小等边三角形围成1个小菱形,第②个图案由6个小等边三角形围成2个小菱形,……,若按此规律拼下去,则第n个图案需要火柴棍的根数为__________(用含n的式子表示).15.如图,在菱形中,点E,F,G,H分别是,,,上的点,且,若菱形的面积等于24,,则___________________.16.在某次数学探究活动中,小明将一张斜边为4的等腰直角三角形硬纸片剪切成如图所示的四块(其中D,E,F分别为,,的中点,G,H分别为,的中点),小明将这四块纸片重新组合拼成四边形(相互不重叠,不留空隙),则所能拼成的四边形中周长的最小值为____________,最大值为___________________.三、解答题(本题有9个小题,共72分)17.计算:.18.化简:.19.市体育局对甲、乙两运动队的某体育项目进行测试,两队人数相等,测试后统计队员的成绩分别为:7分、8分、9分、10分(满分为10分).依据测试成绩绘制了如图所示尚不完整的统计图表:甲队成绩统计表成绩7分8分9分10分人数01m7请根据图表信息解答下列问题:(1)填空:__________,_________;(2)补齐乙队成绩条形统计图;(3)①甲队成绩的中位数为_________,乙队成绩的中位数为___________;②分别计算甲、乙两队成绩平均数,并从中位数和平均数的角度分析哪个运动队的成绩较好.20.如图,的对角线交于点,分别以点为圆心,长为半径画弧,两弧交于点,连接.(1)试判断四边形的形状,并说明理由;(2)请说明当的对角线满足什么条件时,四边形是正方形?21.函数的图象可以由函数的图象左右平移得到.(1)将函数的图象向右平移4个单位得到函数的图象,则____;(2)下列关于函数的性质:①图象关于点对称;②随的增大而减小;③图象关于直线对称;④的取值范围为.其中说法正确的是________(填写序号);(3)根据(1)中的值,写出不等式的解集:_________.22.如图,在中,,点在上,以为圆心,为半径的半圆分别交,于点,且点是弧的中点.(1)求证:是的切线;(2)若,求图中阴影部分的面积(结果保留).23.“端午节”吃粽子是中国传统习俗,在“端午节”来临前,某超市购进一种品牌粽子,每盒进价是40元,并规定每盒售价不得少于50元,日销售量不低于350盒,根据以往销售经验发现,当每盒售价定为50元时,日销售量为500盒,每盒售价每提高1元,日销售量减少10盒,设每盒售价为x元,日销售量为p盒.(1)当时,__________;(2)当每盒售价定为多少元时,日销售利润W(元)最大?最大利润是多少?(3)小强说:“当日销售利润最大时,日销售额不是最大,”小红说:“当日销售利润不低于8000元时,每盒售价x的范围为.”你认为他们的说法正确吗?若正确,请说明理由;若不正确,请直接写出正确的结论.24.过正方形的顶点作直线,点关于直线的对称点为点,连接,直线交直线于点.(1)如图1,若,则___________;(2)如图1,请探究线段,,之间的数量关系,并证明你的结论;(3)在绕点转动的过程中,设,请直接用含的式子表示的长.25.已知抛物线过点和点,与轴交于点.(1)求抛物线的解析式;(2)如图1,连接,点在线段上(与点不重合),点是中点,连接,过点作交于点,连接,当面积是面积的3倍时,求点的坐标;(3)如图2,点是抛物线上对称轴右侧的点,是轴正半轴上的动点,若线段上存在点(与点不重合),使得,求的取值范围.

2023年十堰市初中毕业生学业水平考试数学试题满分120分,考试时限120分钟.一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.【1题答案】【答案】C【2题答案】【答案】D【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】C【6题答案】【答案】A【7题答案】【答案】D【8题答案】【答案】B【9题答案】【答案】B【10题答案】【答案】A二、填空题(本题有6个小题,每小题3分,共18分)【11题答案】【答案】【12题答案】【答案】6【13题答案】【答案】##100度【14题答案】【答案】##【15题答案】【答案】6【16题答案】【答案】①.8②.三、解答题(本题有9个小题,共72分)【17题答案】【答案】【18题答案】【答案】【19题答案】【答案】(1)(2)见解析(3)①9分,8分②,,中位数角度看甲队成绩较好,从平均数角度看甲队成绩较好【20题答案】【答案】(1)平行四边形,见解析(2)且【21题答案】【答案】(1)(2)①④(3)或【22题答案】【答案】(1)证明见解析(2)【23题答案】【答案】(1)(2)当每盒售价定为元时,日销售利润W(元)最大,最大利润是元.(3)他们的说法正确,理由见解析【24题答案】【答案】(1)(2)(3),或,或【25题答案】【答案】(1)(2)(3)

2022年湖北省中考数学真题及答案一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.2的相反数是A. B.2 C. D.2.下列几何体中,主视图与俯视图的形状不一样的几何体是A.B. C.D.3.下列计算正确的是A. B.C. D.4.如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是A.两点之间,线段最短 B.两点确定一条直线C.垂线段最短D.三角形两边之和大于第三边5.甲、乙两人在相同的条件下,各射击10次,经计算:甲射击成绩的平均数是8环,方差是1.1;乙射击成绩的平均数是8环,方差是1.5.下列说法中不一定正确的是A.甲、乙的总环数相同 B.甲的成绩比乙的成绩稳定 C.乙的成绩比甲的成绩波动大 D.甲、乙成绩的众数相同6.我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗?如果设清酒斗,那么可列方程为A. B. C. D.7.如图,某零件的外径为,用一个交叉卡钳(两条尺长和相等)可测量零件的内孔直径.如果,且量得,则零件的厚度为A. B. C. D.8.如图,坡角为的斜坡上有一棵垂直于水平地面的大树,当太阳光线与水平线成角沿斜坡照下时,在斜坡上的树影长为,则大树的高为A. B.C. D.9.如图,是等边的外接圆,点是弧上一动点(不与,重合),下列结论:①;②;③当最长时,;④,其中一定正确的结论有A.1个 B.2个 C.3个 D.4个10.如图,正方形的顶点分别在反比例函数和的图象上.若轴,点的横坐标为3,则k1+k2=A.36 B.18 C.12 D.9二、填空题(本题有6个小题,每小题3分,共18分)11.袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年努力,目前我国杂交水稻种植面积约为2.5亿亩.将250000000用科学记数法表示为,则.12.关于的不等式组中的两个不等式的解集如图所示,则该不等式组的解集为.13.“美丽乡村”建设使我市农村住宅旧貌变新颜,如图所示为一农村民居侧面截图,屋坡,分别架在墙体的点,处,且,侧面四边形为矩形.若测得,则.14.如图,某链条每节长为,每两节链条相连接部分重叠的圆的直径为,按这种连接方式,50节链条总长度为.15.如图,扇形中,,,点为上一点,将扇形沿折叠,使点的对应点落在射线上,则图中阴影部分的面积为.16.【阅读材料】如图①,四边形中,,,点,分别在,上,若,则.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形.已知,,,,道路,上分别有景点,,且,,若在,之间修一条直路,则路线的长比路线的长少(结果取整数,参考数据:.三、解答题(本题有9个小题,共72分)17.(5分)计算:.18.(5分)计算:.19.(6分)已知关于的一元二次方程.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为,,且,求的值.20.(9分)某兴趣小组针对视力情况随机抽取本校部分学生进行调查,将调查结果进行统计分析,绘制成如下不完整的统计图表.抽取的学生视力情况统计表类别调查结果人数正常48轻度近视76中度近视60重度近视请根据图表信息解答下列问题:(1)填空:,;(2)该校共有学生1600人,请估算该校学生中“中度近视”的人数;(3)某班有四名重度近视的学生甲、乙、丙、丁,从中随机选择两名学生参加学校组织的“爱眼护眼”座谈会,请用列表或画树状图的方法求同时选中甲和乙的概率.21.(7分)如图,中,,相交于点,,分别是,的中点.(1)求证:;(2)设,当为何值时,四边形是矩形?请说明理由.22.(8分)如图,中,,为上一点,以为直径的与相切于点,交于点,,垂足为.(1)求证:是的切线;(2)若,,求的长.23.(10分)某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量(件与销售时间(天之间的关系式是,销售单价(元件)与销售时间(天之间的函数关系如图所示.(1)第15天的日销售量为件;(2)时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?24.(10分)已知,在内部作等腰,,.点为射线上任意一点(与点不重合),连接,将线段绕点逆时针旋转得到线段,连接并延长交射线于点.(1)如图1,当时,线段与的数量关系是;(2)如图2,当时,(1)中的结论是否还成立?若成立,请给予证明;若不成立,请说明理由;(3)若,,,过点作,垂足为,请直接写出的长(用含有的式子表示).25.(12分)已知抛物线与轴交于点和点两点,与轴交于点.(1)求抛物线的解析式;(2)点是抛物线上一动点(不与点,,重合),作轴,垂足为,连接.①如图1,若点在第三象限,且,求点的坐标;②直线交直线于点,当点关于直线的对称点落在轴上时,求四边形的周长.2022年十堰市初中毕业生学业水平考试数学试题参考答案一、选择题(本题有10个小题,每小题3分,共30分)1.A 2.C 3.B 4.B 5.D6.A 7.B 8.A 9.C 10.B二、填空题(本题有6个小题,每小题3分,共18分)11.8 12. 13.11014.91 15. 16.370三、解答题(本题有9个小题,共72分)17.(5分)解:.18.(5分)解:.19.(6分(1)证明:,,,△,方程总有两个不相等的实数根;(2)解:由题意得:,解得:,,,,的值为.20.(9分)解:(1)由题意得:,,,故答案为:16,108;(2)由题意得:(人,该校学生中“中度近视”的人数为480人;(3)如图:总共有12种等可能结果,其中同时选中甲和乙的结果有2种,.21.(7分)(1)证明:如图,连接,,四边形是平行四边形,,,,分别为,的中点,,,,,,四边形是平行四边形,;(2)解:当时,四边形是矩形;理由如下:当时,四边形是矩形,当时,四边形是矩形,,当时,四边形是矩形.故答案为:2.22.(8分)(1)证明:如图,连接,,,,,,,,,又是半径,是的切线;(2)解:如图,连接,过点作于,,,,,与相切于点,,又,,四边形是矩形,,,又,,,,,.23.(10分)解:(1)日销售量(件与销售时间(天之间的关系式是,第15天的销售量为件,故答案为:30;(2)由销售单价(元件)与销售时间(天之间的函数图象得:,当时,日销售额,,日销售额随的增大而增大,当时,日销售额最大,最大值为(元;当时,日销售额,,当时,日销售额随的增大而增大,当时,日销售额最大,最大值为2100(元,综上,当时,日销售额的最大值2100元;(3)由题意得:当时,,解得:,当时,,解得:,当时,日销售量不低于48件,为整数,的整数值有9个,“火热销售期”共有9天.24.(10分)解:(1);理由如下:连接,如图所示:根据旋转可知,,,,,,,在和中,,,,,在与中,,,,故答案为:;(2)成立,理由如下:如图2,连接,根据旋转可知,,,,,,,在和中,,,,在与中,,,;(3),,为等边三角形,,,当时,连接,如图所示:,,在中,,,即;根据(2)可知,,,,,,又,,,,;当时,与重合,如图所示:,,为等边三角形,,,,此时点与点重合,;当时,连接,如图所示:,,在中,,,即;根据(2)可知,,,,,,又,,,,,综上,的值为或0或.25.(12分)解:(1)由题意得,,,;(2)①如图1,设直线交轴于,,,,,,,点,直线的解析式为:,由得,,(舍去),当时,,,;如图2,设点,四边形的周长记作,点在第三象限时,作轴于,点与关于对称,,,轴,,,,,四边形为平行四边形,为菱形,,,,,,,,(舍去),,,,当点在第二象限时,同理可得:,(舍去),,,综上所述:四边形的周长为:或.

2021年湖北中考数学试题及答案本试卷共6页,24题。全卷满分120分。考试用时120分钟。注意事项:1.答题前,先将自己的姓名﹑准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡的对应题目的答案标号涂黑。写在试卷、草稿纸和答题卡上的非答题区域均无效。3.非选择题的作答:用黑色签字笔直接在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效。4.考试结束后,请将本试卷和答题卡一并上交。一、选择题(本大题共10小题,每小题3分,共30分.在每小题中均给出了四个答案,其中有且只有一个正确答案,请将正确答案的字母代号涂在答题卡上)1.2021的相反数的倒数是A. B. C. D.2.“绿水青山就是金山银山”.某地积极响应党中央号召,大力推进农村厕所革命,已经累计投资元资金.数据用科学记数法可表示为A.10.12亿 B.1.012亿 C.101.2亿 D.1012亿3.下列图形既是中心对称又是轴对称的是ABCD4.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“红”字的面的对面上的字是A.传 B.国C.承 D.基5.下列运算正确的是A. B.C. D.6.我国古代数学古典名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量,木条还剩余1尺;问长木多少尺?如果设木条长为x尺,绳子长为y尺,则下面所列方程组正确的是A. B. C. D.7.如图,将一副三角板在平行四边形ABCD中作如下摆放,设,那么A. B. C. D.8.如图,PA,PB是⊙O的切线,A,B是切点,若,则A. B. C. D.9.在同一直角坐标系中,函数与的大致图象是10.抛物线(a,b,c为常数)开口向下且过点,(),下列结论:①;②;③;④若方程有两个不相等的实数根,则.其中正确结论的个数是A.4 B.3 C.2 D.1二、填空题(本大题共6小题,每小题3分,共18分.请将结果填写在答题卡相应位置)11.计算:▲.12.把多项式因式分解,结果为▲.13.如图,在平面直角坐标系中,斜边上的高为1,,将绕原点顺时针旋转得到,点A的对应点C恰好在函数的图象上,若在的图象上另有一点M使得,则点M的坐标为▲.14.如图,正方形ABCD的边长为2,分别以B,C为圆心,以正方形的边长为半径的圆相交于点P,那么图中阴影部分的面积为▲.15.如果关于x的不等式组恰有2个整数解,则a的取值范围是▲.16.如图,将正整数按此规律排列成数表,则2021是表中第▲行第▲列.三、解答题(本大题共8小题,共72分.请在答题卡相应区域作答)17.(8分)先化简,再求值:,其中.18.(8分)为庆祝中国共产党建党100周年,某校拟举办主题为“学党史跟党走”的知识竞赛活动.某年级在一班和二班进行了预赛,两个班参加比赛的人数相同,成绩分为A、B、C、D四个等级,其等级对应的分值分别为100分、90分、80分、70分,将这两个班学生的最后等级成绩分析整理绘制成了如下的统计图.(1)这次预赛中二班成绩在B等及以上的人数是多少?(2)分别计算这次预赛中一班成绩的平均数和二班成绩的中位数;(3)已知一班成绩A等的4人中有两个男生和2个女生,二班成绩A等的都是女生,年级要求从这两个班A等的学生中随机选2人参加学校比赛,若每个学生被抽取的可能性相等,求抽取的2人中至少有1个男生的概率.19.(8分)如图,点E是正方形ABCD的边BC上的动点,,且,.(1)求证:;(2)若,,用x表示DF的长.20.(8分)某海域有一小岛P,在以P为圆心,半径r为海里的圆形海域内有暗礁.一海监船自西向东航行,它在A处测得小岛P位于北偏东的方向上,当海监船行驶海里后到达B处,此时观测小岛P位于B处北偏东方向上.(1)求A,P之间的距离AP;(2)若海监船由B处继续向东航行是否有触礁危险?请说明理由.如果有触礁危险,那么海监船由B处开始沿南偏东至多多少度的方向航行能安全通过这一海域?21.(8分)已知关于x的一元二次方程有,两实数根.(1)若,求及的值;(2)是否存在实数,满足?若存在,求出求实数的值;若不存在,请说明理由.22.(10分)如图,在中,,点E在BC边上,过A,C,E三点的交AB边于另一点F,且F是AE的中点,AD是的一条直径,连接DE并延长交AB边于M点.(1)求证:四边形CDMF为平行四边形;(2)当时,求的值.23.(10分)某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.x407090y1809030W360045002100(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m(元/件)(),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.24.(12分)如图,抛物线交x轴于,两点,交y轴于点,点Q为线段BC上的动点.(1)求抛物线的解析式;(2)求的最小值;(3)过点Q作交抛物线的第四象限部分于点P,连接PA,PB,记与的面积分别为,,设,求点P坐标,使得S最大,并求此最大值.秘密★启用前荆门市2021年初中学业水平考试数学试题参考答案及评分标准一、选择题(共10小题,每小题3分,共30分)1.C2.B3.C4.D5.D6.A7.C8.B9.B10.A二、填空题(共6小题,每小题3分,共18分)4.5三、解答题(本大题共8小题,共72分)17.将代入上式得原式=.18.(1)两个班参加比赛的人数相同,由条形图可知二班参赛人数为20人由扇形围可知B等及以上的人数为(2)一班成绩的平均数为:,二班成绩的中位数为80(3)二班成绩A等的都是女生,二班成绩A等人数为人:将两个班成绩A等的6人分别记为A,B,C,D,E,F:其中A,B为班两个男生。每个学生被抽取的可能性相等,从这两个班成绩A等的学生中随机选2人的所有情形如下:ABACADAEAFBCBDBEBFCDCECFDEDFEF共15种;其中至少有1个男生的有ABACADAEAFBCBDBeBF共9种;概率为19.(1),。而,。又,.,由可得.(2)作于P,由(1)可知,。,。.20.(1)作,交AB的延长线于C,由题意知:,。设:则,,解得,;(2),.因此海监船继续向东航行有触礁危险;设海监船无触礁危险的新航线为射线BD,作于E,当P到BD的距离PE为r时,有,,所以海监船由B处开始沿南偏东至多的方向航行能安全通过这一海域.21.(1)由题意:,,将代入原方程得:,又,,.(2)设存在实数m,满足,那么有,即,整理得,解得或.由(1)可知,舍去,从而,综上所述:存在符合题意.22.(1)连接,,则,,,因为F是的中点,,从而,又,,;另一方面:,.即,四边形CDMF是平行四边形.(2)由(1)可知:四边形ACDF是矩形,,由可得,,,设,那么,,在中,,在中,在中,.23.(1)设,由题意有,解得,所以y关于x的函数解析式为;(2)由(1),又由表可得,,.所以售价时,周销售利润W最大,最大利润为4800;(3)由题意,其对称轴,时上述函数单调递增,所以只有时周销售利润最大,..24.(1)由已知:,将代入上式得:,,抛物线的解析式为;(2)作点O关于直线BC的对称点D,易得,连接AD,那么,由对称性,,即点Q位于直线AD与直线BC交点时,有最小值5;(3)由已知点,,可以求得直线BC的表达式为,直线AC的表达式为.,直线PQ的表达式可设为,由(1)可设代入直线PQ的表达式可得,由,解得,即,由题意:P,Q都在四象限,P,Q的纵坐标均为负数,,即,根据已知条件P的位置可知.时,S最大,即时,S有最大值.

2020年湖北省中考数学真题及答案(考试时间120分钟满分120分)第Ⅰ卷(选择题共24分)一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,有且只有一个答案是正确的)1.的相反数是()A.B.﹣6C.6D.﹣2.下列运算正确的是()A.m+2m=3m2B.2m3•3m2=6m6C.(2m)3=8m3D.m6÷m2=m33.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.7B.8C.9D.104.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表所示,如果从这四位同学中,选出一位同学参加数学竞赛.那么应选()去.甲乙丙丁平均分85909085方差50425042A.甲B.乙C.丙D.丁5.下列几何体是由4个相同的小正方体搭成的,其中,主视图、左视图、俯视图都相同的是()A.B.C.D.6.在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.若菱形的周长为16,高为2,则菱形两邻角的度数之比为()A.4:1B.5:1C.6:1D.7:18.2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是()A.B.C.D.第Ⅱ卷(非选择题共96分)二、填空题(本题共8小题,每小题3分,共24分)9.计算=.10.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则=.11.若|x﹣2|+=0,则﹣xy=.12.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.13.计算:÷(1﹣)的结果是.14.已知:如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=度.15.我国古代数学著作《九章算术》中有这样一个问题:”今有池方一丈,葭(jiā)生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”(注:丈,尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是尺.16.如图所示,将一个半径OA=10cm,圆心角∠AOB=90°的扇形纸板放置在水平面的一条射线OM上。在没有滑动的情况下,将扇形AOB沿射线OM翻滚至OB,再次回到OM上时,则半径OA的中点P运动的路线长为cm。(计算结果不取近似值)三、解答题(本题共9题,满分72分)17.(5分)解不等式x+≥x,并在数轴上表示其解集.18.(6分)已知:如图,在▱ABCD中,点O是CD的中点,连接AO并延长,交BC的延长线于点E,求证:AD=CE.20.(7分)为了解疫情期间学生网络学习的学习效果,东坡中学随机抽取了部分学生进行调查.要求每位学生从“优秀”,“良好”,“一般”,“不合格”四个等次中,选择一项作为自我评价网络学习的效果.现将调查结果绘制成如图两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共抽查了人.(2)将条形统计图补充完整,并计算出扇形统计图中,学习效果“一般”的学生人数所在扇形的圆心角度数.(3)张老师在班上随机抽取了4名学生,其中学习效果“优秀”的1人,“良好”的2人,“一般”的1人,若再从这4人中随机抽取2人,请用画树状图法,求出抽取的2人学习效果全是“良好”的概率.21.(7分)已知:如图,AB是⊙O的直径,点E为⊙O上一点,点D是上一点,连接AE并延长至点C,使∠CBE=∠BDE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:AD2=DF•DB.22.(8分)因东坡文化远近闻名的遗爱湖公园,“国庆黄金周”期间,游人络绎不绝,现有一艘游船载着游客在遗爱湖中游览,当船在A处时,船上游客发现岸上P1处的临摹亭和P2处的遗爱亭都在东北方向,当游船向正东方向行驶600m到达B处时,游客发现遗爱亭在北偏西15°方向,当游船继续向正东方向行驶400m到达C处时,游客发现临摹亭在北偏西60°方向.(1)求A处到临摹亭P1处的距离;(2)求临摹亭P1处与遗爱亭P2处之间的距离.(计算结果保留根号)23.(8分)已知:如图,一次函数的图象与反比例函数的图象交于A,B两点,与y轴正半轴交于点C,与x轴负半轴交于点D,OB=,tan∠DOB=.(1)求反比例函数的解析式;(2)当S△ACO=S△OCD时,求点C的坐标.24.(11分)网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w(元).(1)请求出日获利w与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当w≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,求a的值.25.(14分)已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y铀交于点C(0,3).顶点为点D.(1)求抛物线的解析式;(2)若过点C的直线交线段AB于点E,且S△ACE:S△CEB=3:5,求直线CE的解析式;(3)若点P在抛物线上,点Q在x轴上,当以点D,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标;(4)已知点H(0,),G(2,0),在抛物线对称轴上找一点F,使HF+AF的值最小.此时,在抛物线上是否存在一点K,使KF+KG的值最小?若存在,求出点K的坐标;若不存在,请说明理由.答案与解析第Ⅰ卷(选择题共24分)一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,有且只有一个答案是正确的)1.的相反数是()A.B.﹣6C.6D.﹣【知识考点】相反数.【思路分析】只有符号不同的两个数是互为相反数,在数轴上表示,分别位于原点的两侧,且到原点距离相等的两点所表示的数是互为相反数.【解题过程】解:的相反数是﹣,故选:D.【总结归纳】本题考查相反数的意义和求法,理解相反数的意义是正确解答的前提.2.下列运算正确的是()A.m+2m=3m2B.2m3•3m2=6m6C.(2m)3=8m3D.m6÷m2=m3【知识考点】合并同类项;幂的乘方与积的乘方;同底数幂的除法;单项式乘单项式.【思路分析】利用合并同类项、同底数幂的乘除法以及幂的乘方、积的乘方进行计算即可.【解题过程】解:m+2m=3m,因此选项A不符合题意;2m3•3m2=6m5,因此选项B不符合题意;(2m)3=23•m3=8m3,因此选项C符合题意;m6÷m2=m6﹣2=m4,因此选项D不符合题意;故选:C.【总结归纳】本题考查合并同类项的法则、同底数幂的乘除法以及幂的乘方、积的乘方的计算方法,掌握计算法则是得出正确答案的前提.3.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.7B.8C.9D.10【知识考点】多边形内角与外角.【思路分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【解题过程】解:360°÷36°=10,所以这个正多边形是正十边形.故选:D.【总结归纳】本题主要考查了多边形的外角和定理.是需要识记的内容.4.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表所示,如果从这四位同学中,选出一位同学参加数学竞赛.那么应选()去.甲乙丙丁平均分85909085方差50425042A.甲B.乙C.丙D.丁【知识考点】方差.【思路分析】先找到四人中平均数大的,即成绩好的;再从平均成绩好的人中选择方差小,即成绩稳定的,从而得出答案.【解题过程】解:∵=>=,∴四位同学中乙、丙的平均成绩较好,又<,∴乙的成绩比丙的成绩更加稳定,综上,乙的成绩好且稳定,故选:B.【总结归纳】本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.下列几何体是由4个相同的小正方体搭成的,其中,主视图、左视图、俯视图都相同的是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.【解题过程】解:A.主视图、左视图、俯视图均为底层是两个小正方形,上层的左边是一个小正方形,故本选项符合题意;B主视图与左视图均为底层是两个小正方形,上层的左边是一个小正方形;而俯视图的底层左边是一个小正方形,上层是两个小正方形,故本选项不合题意;C.主视图与俯视图均为一行三个小正方形,而左视图是一列两个小正方形,故本选项不合题意.D.主视图为底层两个小正方形,上层的右边是一个小正方形;左视图为底层是两个小正方形,上层的左边是一个小正方形;俯视图的底层左边是一个小正方形,上层是两个小正方形,故本选项不合题意;故选:A.【总结归纳】本题考查了简单组合体的三视图,利用三视图的意义是解题关键.6.在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【知识考点】点的坐标.【思路分析】根据点A(a,﹣b)在第三象限,可得a<0,﹣b<0,得b>0,﹣ab>0,进而可以判断点B(﹣ab,b)所在的象限.【解题过程】解:∵点A(a,﹣b)在第三象限,∴a<0,﹣b<0,∴b>0,∴﹣ab>0,∴点B(﹣ab,b)所在的象限是第一象限.故选:A.【总结归纳】本题考查了点的坐标,解决本题的关键是掌握点的坐标特征.7.若菱形的周长为16,高为2,则菱形两邻角的度数之比为()A.4:1B.5:1C.6:1D.7:1【知识考点】菱形的性质.【思路分析】如图,AH为菱形ABCD的高,AH=2,利用菱形的性质得到AB=4,利用正弦的定义得到∠B=30°,则∠C=150°,从而得到∠C:∠B的比值.【解题过程】解:如图,AH为菱形ABCD的高,AH=2,∵菱形的周长为16,∴AB=4,在Rt△ABH中,sinB===,∴∠B=30°,∵AB∥CD,∴∠C=150°,∴∠C:∠B=5:1.故选:B.【总结归纳】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了直角三角形斜边上的中线性质.8.2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是()A.B.C.D.【知识考点】函数的图象.【思路分析】根据开始产量与销量持平,后来脱销即可确定存量y(吨)与时间t(天)之间函数关系.【解题过程】解:根据题意:时间t与库存量y之间函数关系的图象为先平,再逐渐减小,最后为0.故选:D.【总结归纳】本题要求能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.第Ⅱ卷(非选择题共96分)二、填空题(本题共8小题,每小题3分,共24分)9.计算=.【知识考点】立方根.【思路分析】依据立方根的定义求解即可.【解题过程】解:=﹣2.故答案为:﹣2.【总结归纳】本题主要考查的是立方根的性质,熟练掌握立方根的性质是解题的关键.10.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则=.【知识考点】根与系数的关系.【思路分析】根据x1,x2是方程x2+px+q=0的两根时x1x2=q,得出x1x2=﹣1,代入计算可得答案.【解题过程】解:∵x1,x2是一元二次方程x2﹣2x﹣1=0的两根,∴x1x2=﹣1,则=﹣1,故答案为:﹣1.【总结归纳】本题主要考查根与系数的关系,解题的关键是掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.11.若|x﹣2|+=0,则﹣xy=.【知识考点】非负数的性质:绝对值;非负数的性质:算术平方根.【思路分析】根据非负数的性质进行解答即可.【解题过程】解:∵|x﹣2|+=0,∴x﹣2=0,x+y=0,∴x=2,y=﹣2,∴,故答案为2.【总结归纳】本题考查了非负数的性质,掌握几个非负数的和为0,这几个数都为0,是解题的关键.12.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.【知识考点】等腰三角形的性质.【思路分析】根据等腰三角形的性质和三角形的内角和定理即可得到结论.【解题过程】解:∵AD=DC,∴∠DAC=∠C=35°,∴∠ADB=∠DAC+∠C=70°.∵AB=AD,∴∠B=∠ADB=70°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣70°﹣70°=40°.故答案为:40..【总结归纳】本题考查了等腰三角形的性质及三角形内角和为180°等知识.此类已知三角形边之间的关系求角的度数的题,一般是利用等腰(等边)三角形的性质得出有关角的度数,进而求出所求角的度数.13.计算:÷(1﹣)的结果是.【知识考点】分式的混合运算.【思路分析】先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得.【解题过程】解:原式=÷(﹣)=÷=•=,故答案为:.【总结归纳】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.14.已知:如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=度.【知识考点】平行线的性质.【思路分析】根据邻补角的定义得到∠EDC=180°﹣135°=45°,根据平行线的性质得到∠1=∠ABC=75°,根据三角形外角的性质即可得到结论.【解题过程】解:∵∠CDF=135°,∴∠EDC=180°﹣135°=45°,∵AB∥EF,∠ABC=75°,∴∠1=∠ABC=75°,∴∠BCD=∠1﹣∠EDC=75°﹣45°=30°,故答案为:30.【总结归纳】本题考查了平行线的性质,三角形外角的性质,邻补角的定义,熟练掌握平行线的性质是解题的关键.15.我国古代数学著作《九章算术》中有这样一个问题:”今有池方一丈,葭(jiā)生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”(注:丈,尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是尺.【知识考点】数学常识;勾股定理的应用.【思路分析】根据勾股定理列出方程,解方程即可.【解题过程】解:设水池里水的深度是x尺,由题意得,x2+52=(x+1)2,解得:x=12,答:水池里水的深度是12尺.故答案为:12.【总结归纳】本题考查的是勾股定理的应用,掌握勾股定理、根据勾股定理正确列出方程是解题的关键.16.如图所示,将一个半径OA=10cm,圆心角∠AOB=90°的扇形纸板放置在水平面的一条射线OM上。在没有滑动的情况下,将扇形AOB沿射线OM翻滚至OB,再次回到OM上时,则半径OA的中点P运动的路线长为cm。(计算结果不取近似值)【解题过程】三、解答题(本题共9题,满分72分)17.(5分)解不等式x+≥x,并在数轴上表示其解集.【知识考点】在数轴上表示不等式的解集;解一元一次不等式.【思路分析】去分母、移项、合并、系数化为1即可得到不等式的解集为x≥﹣3,然后在数轴上表示解集即可.【解题过程】解:去分母得4x+3≥3x,移项、合并得x≥﹣3,所以不等式的解集为x≥﹣3,在数轴上表示为:【总结归纳】本题考查了解一元一次不等式,掌握解法的基本步骤:去分母,去括号,移项,合并同类项,系数化为1是解题的关键.18.(6分)已知:如图,在▱ABCD中,点O是CD的中点,连接AO并延长,交BC的延长线于点E,求证:AD=CE.【知识考点】全等三角形的判定与性质;平行四边形的性质.【思路分析】只要证明△AOD≌△EOC(ASA)即可解决问题;【解题过程】证明:∵O是CD的中点,∴OD=CO,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO和△ECO中,,∴△AOD≌△EOC(ASA),∴AD=CE.【总结归纳】此题主要考查了全等三角形的判定与性质,平行四边形的性质等知识,解题的关键是正确寻找全等三角形解决问题.19.(6分)为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元,如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元,请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?【知识考点】二元一次方程组的应用.【思路分析】设每盒羊角春牌绿茶需要x元,每盒九孔牌藕粉需要y元,根据“如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元,如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解题过程】解:设每盒羊角春牌绿茶需要x元,每盒九孔牌藕粉需要y元,依题意,得:,解得:.答:每盒羊角春牌绿茶需要120元,每盒九孔牌藕粉需要60元.【总结归纳】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(7分)为了解疫情期间学生网络学习的学习效果,东坡中学随机抽取了部分学生进行调查.要求每位学生从“优秀”,“良好”,“一般”,“不合格”四个等次中,选择一项作为自我评价网络学习的效果.现将调查结果绘制成如图两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共抽查了人.(2)将条形统计图补充完整,并计算出扇形统计图中,学习效果“一般”的学生人数所在扇形的圆心角度数.(3)张老师在班上随机抽取了4名学生,其中学习效果“优秀”的1人,“良好”的2人,“一般”的1人,若再从这4人中随机抽取2人,请用画树状图法,求出抽取的2人学习效果全是“良好”的概率.【知识考点】扇形统计图;条形统计图;列表法与树状图法.【思路分析】(1)由“良好”的人数及其所占百分比可得总人数;(2)求出“不合格”的学生人数为20人,从而补全条形统计图;由360°乘以学习效果“一般”的学生人数所占的百分比即可;(3)画出树状图,利用概率公式求解即可.【解题过程】解:(1)这次活动共抽查的学生人数为80÷40%=200(人);故答案为:200;(2)“不合格”的学生人数为200﹣40﹣80﹣60=20(人),将条形统计图补充完整如图:学习效果“一般”的学生人数所在扇形的圆心角度数为360°×=108°;(3)把学习效果“优秀”的记为A,“良好”记为B,“一般”的记为C,画树状图如图:共有12个等可能的结果,抽取的2人学习效果全是“良好”的结果有2个,∴抽取的2人学习效果全是“良好”的概率==.【总结归纳】本题考查了列表法或画树状图法、概率公式以及条形统计图和扇形统计图的有关知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.(7分)已知:如图,AB是⊙O的直径,点E为⊙O上一点,点D是上一点,连接AE并延长至点C,使∠CBE=∠BDE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:AD2=DF•DB.【知识考点】圆周角定理;切线的判定与性质;相似三角形的判定与性质.【思路分析】(1)根据圆周角定理即可得出∠EAB+∠EBA=90°,再由已知得出∠ABE+∠CBE=90°,则CB⊥AB,从而证得BC是⊙O的切线;(2)通过证得△ADF∽△BDA,得出相似三角形的对应边成比例即可证得结论.【解题过程】证明:(1)∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∵∠CBE=∠BDE,∠BDE=∠EAB,∴∠EAB=∠CBE,∴∠EBA+∠CBE=90°,即∠ABC=90°,∴CB⊥AB,∵AB是⊙O的直径,∴BC是⊙O的切线;(2)证明:∵BD平分∠ABE,∴∠ABD=∠DBE,∵∠DAF=∠DBE,∴∠DAF=∠ABD,∵∠ADB=∠ADF,∴△ADF∽△BDA,∴,∴AD2=DF•DB.【总结归纳】本题考查了切线的判定,三角形相似的判定和性质;要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.22.(8分)因东坡文化远近闻名的遗爱湖公园,“国庆黄金周”期间,游人络绎不绝,现有一艘游船载着游客在遗爱湖中游览,当船在A处时,船上游客发现岸上P1处的临摹亭和P2处的遗爱亭都在东北方向,当游船向正东方向行驶600m到达B处时,游客发现遗爱亭在北偏西15°方向,当游船继续向正东方向行驶400m到达C处时,游客发现临摹亭在北偏西60°方向.(1)求A处到临摹亭P1处的距离;(2)求临摹亭P1处与遗爱亭P2处之间的距离.(计算结果保留根号)【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】(1)如图,作P1M⊥AC于M,设P1M=x,在两个直角三角形中,利用三角函数即可x表示出AM与CM,根据AC=AM+CM即可列方程,从而求得P1M的长,进一步求得AP1的长;(2)作BN⊥AP2于N,在两个直角三角形中,利用三角函数即可求出AN与P2N,根据(1)的结果求得P1N,从而求得P1P2.【解题过程】解:(1)作P1M⊥AC于M,设P1M=x,在Rt△P1AM中,∵∠P1AB=45°,∴AM=P1M=x,在Rt△P1CM中,∵∠P1CA=30°,∴MC==x,∵AC=1000,∴x+=100,解得x=500(﹣1),∴P1M=500(﹣1)m∴P1A==500(﹣)m,故A处到临摹亭P1处的距离为500(﹣)m;(2)作BN⊥AP2于N,∵∠P2AB=45°,∠P2BA=75°,∴∠P2=60°,在Rt△ABN中,∵∠P1AB=45°,AB=600m∴BN=AN=AB=300,∴PN=500(﹣)﹣300=500﹣800,在Rt△P2BN中,∵∠P2=60°,∴P2N=BN=×=100,∴P1P2=100﹣(500﹣800)=800﹣400.故临摹亭P1处与遗爱亭P2处之间的距离是(800﹣400)m.【总结归纳】本题主要考查了直角三角形的计算,一般的三角形可以通过作高线转化为解直角三角形的计算,计算时首先计算直角三角形的公共边是常用的思路.23.(8分)已知:如图,一次函数的图象与反比例函数的图象交于A,B两点,与y轴正半轴交于点C,与x轴负半轴交于点D,OB=,tan∠DOB=.(1)求反比例函数的解析式;(2)当S△ACO=S△OCD时,求点C的坐标.【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)根据OB=,tan∠DOB=,可求出点B的坐标,进而确定反比例函数的关系式;(2)利用S△ACO=S△OCD,可得OD=2AN,再根据相似三角形的性质,设AN=a、CN=b,表示出OD、OC,最后根据三角形OBM的面积为|k|=1,列方程求出b的值即可.【解题过程】解:过点B、A作BM⊥x轴,AN⊥x轴,垂足为点M,N,(1)在Rt△BOM中,OB=,tan∠DOB=.∵BM=1,OM=2,∴点B(﹣2,﹣1),∴k=(﹣2)×(﹣1)=2,∴反比例函数的关系式为y=;(2)∵S△ACO=S△OCD,∴OD=2AN,又∵△ANC∽△DOC,∴===,设AN=a,CN=b,则OD=2a,OC=2b,∵S△OAN=|k|=1=ON•AN=×3b×a,∴ab=,①,由△BMD∽△CNA得,∴=,即=,也就是a=②,由①②可求得b=1,b=﹣(舍去),∴OC=2b=2,∴点C(0,2).【总结归纳】本题考查反比例函数、一次函数图象上点的坐标特征,理解反比例函数k的几何意义是列方程的关键.24.(11分)网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w(元).(1)请求出日获利w与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当w≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,求a的值.【知识考点】二次函数的应用.【思路分析】(1)分两种情况讨论,由日获利=销售单价×数量,可求解;(2)分两种情况讨论,由二次函数的性质,分别求出6≤x≤10和10<x≤30时的最大利润,即可求解;(3)由w≥40000元,可得w与x的关系式为w=﹣100x2+5600x﹣32000,可求当20≤x≤36时,w≥40000,可得日获利w1=(x﹣6﹣a)(﹣100x+5000)﹣2000=﹣100x2+(5600+100a)x﹣32000﹣5000a,由二次函数的性质可求解.【解题过程】解:(1)当y≥4000,即﹣100x+5000≥4000,∴x≤10,∴当6≤x≤10时,w=(x﹣6+1)(﹣100x+5000)﹣2000=﹣100x2+5500x﹣27000,当10<x≤30时,w=(x﹣6)(﹣100x+5000)﹣2000=﹣100x2+5600x﹣32000,综上所述:w=;(2)当6≤x≤10时,w=﹣100x2+5500x﹣27000=﹣100(x﹣)2+48625,∵a=﹣100<0,对称轴为x=,∴当6≤x≤10时,y随x的增大而增大,即当x=10时,w最大值=18000元,当10<x≤30时,w=﹣100x2+5600x﹣32000=﹣100(x﹣28)2+46400,∵a=﹣100<0,对称轴为x=28,∴当x=28时,w有最大值为46400元,∵46400>18000,∴当销售单价定为28时,销售这种板栗日获利最大,最大利润为46400元;(3)∵40000>18000,∴10<x≤30,∴w=﹣100x2+5600x﹣32000,当w=40000元时,40000=﹣100x2+5600x﹣32000,∴x1=20,x2=36,∴当20≤x≤36时,w≥40000,又∵10<x≤30,∴20≤x≤30,此时:日获利w1=(x﹣6﹣a)(﹣100x+5000)﹣2000=﹣100x2+(5600+100a)x﹣32000﹣5000a,∴对称轴为直线x==28+a,∵a<4,∴28+a<30,∴当x=28+a时,日获利的最大值为42100元∴(28+a﹣6﹣a)[﹣100×(28+a)+500]﹣2000=42100,∴a1=2,a2=86,∵a<4,∴a=2.【总结归纳】本题考查了二次函数的应用,二次函数的性质,利用分类讨论思想解决问题是本题的关键.25.(14分)已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y铀交于点C(0,3).顶点为点D.(1)求抛物线的解析式;(2)若过点C的直线交线段AB于点E,且S△ACE:S△CEB=3:5,求直线CE的解析式;(3)若点P在抛物线上,点Q在x轴上,当以点D,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标;(4)已知点H(0,),G(2,0),在抛物线对称轴上找一点F,使HF+AF的值最小.此时,在抛物线上是否存在一点K,使KF+KG的值最小?若存在,求出点K的坐标;若不存在,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)因为抛物线经过A(﹣1,0),B(3,0),可以假设抛物线的解析式为y=a(x+1)(x﹣3),利用待定系数法解决问题即可.(2)求出点E的坐标即可解决问题.(3)分点P在x轴的上方或下方,点P的纵坐标为1或﹣1,利用待定系数法求解即可.(4)如图3中,连接BH交对称轴于F,连接AF,此时AF+FH的值最小.求出直线HB的解析式,可得点F的坐标,设K(x,y),作直线y=,过点K作KM⊥直线y=于M.证明KF=KM,利用垂线段最短解决问题即可.【解题过程】解:(1)因为抛物线经过A(﹣1,0),B(3,0),∴可以假设抛物线的解析式为y=a(x+1)(x﹣3),把C(0,3)代入,可得a=﹣1,∴抛物线的解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)如图1中,连接AC,BC.∵S△ACE:S△CEB=3:5,∴AE:EB=3:5,∵AB=4,∴AE=4×=,∴OE=0.5,设直线CE的解析式为y=kx+b,则有,解得,∴直线EC的解析式为y=﹣6x+3.(3)由题意C(0,3),D(1,4).当四边形P1Q1CD,四边形P2Q2CD是平行四边形时,点P的纵坐标为1,当y=1时,﹣x2+2x+3=1,解得x=1±,∴P1(1+,1),P2(1﹣,1),当四边形P3Q3DC,四边形P4Q4DC是平行四边形时,点P的纵坐标为﹣1,当y=﹣1时,﹣x2+2x+3=﹣1,解得x=1±,∴P1(1+,﹣1),P2(1﹣,﹣1),综上所述,满足条件的点P的坐标为(1+,1)或(1﹣,1)或(1﹣,﹣1)或(1+,﹣1).(4)如图3中,连接BH交对称轴于F,连接AF,此时AF+FH的值最小.∵H(0,),B(3,0),∴直线BH的解析式为y=﹣x+,∵x=1时,y=,∴F(1,),设K(x,y),作直线y=,过点K作KM⊥直线y=于M.∵KF=,y=﹣x2+2x+3=﹣(x﹣1)2+4,∴(x﹣1)2=4﹣y,∴KF===|y﹣),∵KM=|y﹣|,∴KF=KM,∴KG+KF=KG+KM,根据垂线段最短可知,当G,K,M共线,且垂直直线y=时,GK+KM的值最小,最小值为,此时K(2,3).【总结归纳】本题属于二次函数综合题,考查了待定系数法,一次函数的性质,平行四边形的判定和性质,垂线段最短等知识,解题的关键是学会用分类讨论的思想思考问题,第四个问题的关键是学会用转化的思想思考问题,把最短问题转化为垂线段最短,属于中考压轴题.

2019年湖北省中考数学真题及答案一、选择题(共10小题,每小题3分,共30分)1.(3分)实数2019的相反数是()A.2019 B.﹣2019 C.QUOTE D.QUOTE2.(3分)式子QUOTE在实数范围内有意义,则x的取值范围是()A.x>0 B.x≥﹣1 C.x≥1 D.x≤13.(3分)不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球 B.3个球都是白球 C.三个球中有黑球 D.3个球中有白球4.(3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是()A. B. C. D.5.(3分)如图是由5个相同的小正方体组成的几何体,该几何体的左视图是()A. B. C. D.6.(3分)“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()A. B. C. D.7.(3分)从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为()A.QUOTE B.QUOTE C.QUOTE D.QUOTE8.(3分)已知反比例函数yQUOTE的图象分别位于第二、第四象限,A(x1,y1)、B(x2,y2)两点在该图象上,下列命题:①过点A作AC⊥x轴,C为垂足,连接OA.若△ACO的面积为3,则k=﹣6;②若x1<0<x2,则y1>y2;③若x1+x2=0,则y1+y2=0,其中真命题个数是()A.0 B.1 C.2 D.39.(3分)如图,AB是⊙O的直径,M、N是QUOTE(异于A、B)上两点,C是QUOTE上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是()A.QUOTE B.QUOTE C.QUOTE D.QUOTE10.(3分)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2 C.2a2﹣a D.2a2+a二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算QUOTE的结果是.12.(3分)武汉市某气象观测点记录了5天的平均气温(单位:℃),分别是25、20、18、23、27,这组数据的中位数是.13.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论