版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题14指数、对数、幂函数、函数图象、函数零点及函数模型的应用考点十年考情(2015-2024)命题趋势考点1指数函数及其应用(10年5考)2023·全国乙卷、2023·全国新Ⅰ卷、2022·北京卷2017·全国、2016·北京、2015·江苏、2015·山东卷、2015·福建卷掌握指数对数幂函数的图象与性质,会指数对数的相关运算,会指对幂函数值的大小比较,都是高考命题的方向掌握函数图象的判断方法掌握函数零点的定义,会用零点存在定理判断零点所在区间,会求解零点相关问题,也是高考命题的高频考点掌握函数模型及其应用考点2对数运算及指对互化(10年8考)2024·全国甲卷、2023·北京卷、2022·天津卷2022·浙江卷、2022·全国乙卷、2021·天津卷2020·全国卷、2018·全国卷、2016·浙江卷2015·浙江卷、2015·浙江卷、2015·四川卷2015·上海卷、2015·上海卷、2015·安徽卷考点3对数函数及其应用(10年3考)2024·北京卷、2024·全国新Ⅰ卷、2020·全国新Ⅱ卷2020·全国卷、2020·北京卷、2015·重庆卷2015·四川卷、2015·湖北卷、2015·北京卷考点4幂函数(10年3考)2024·天津卷、2023·北京卷、2020·江苏卷考点5指对幂函数值大小比较(10年10考)2024·天津卷、2023·全国甲卷、2023·天津卷2022·天津卷、2022·全国甲卷、2022·全国新Ⅰ卷2021·天津卷、2021·全国新Ⅱ卷、2020·天津卷2020·全国卷、2020·全国卷、2020·全国卷2019·天津卷、2019·天津卷、2018·天津卷2017·全国卷、2016·全国卷、2016·全国卷2015·重庆卷、2015·陕西卷、2015·山东卷考点6函数图象(10年8考)2024·全国甲卷、2023·天津卷、2022·全国乙卷2022·全国甲卷、2022·天津卷、2021·浙江卷2020·天津卷、2020·浙江卷、2019·浙江卷2018·全国卷、2018·浙江卷、2018·全国卷2017·全国卷、2017·全国卷、2015·安徽卷2015·浙江卷考点7函数零点及其应用(10年10考)2024·全国新Ⅰ卷、2024·全国新Ⅱ卷、2024·全国新Ⅱ卷、2024·全国甲卷、2024·天津卷、2023·天津卷、2023·全国新Ⅰ卷、2022·天津卷、2022·北京卷2021·北京卷、2021·天津卷、2020·天津卷2019·全国卷、2019·浙江卷、2019·江苏卷2018·全国卷、2018·浙江卷、2018·天津卷2018·全国卷、2017·山东卷、2017·江苏卷2016·江苏卷、2016·天津卷、2016·天津卷2016·天津卷、2016·天津卷、2015·天津卷2015·天津卷、2015·安徽卷、2015·江苏卷2015·湖北卷、2015·湖北卷、2015·安徽卷2015·湖南卷、2015·湖南卷考点8函数模型(10年5考)2024·北京卷、2022·北京卷、2021·全国甲卷2019·北京卷、2017·北京卷考点01指数函数及其应用1.(2023·全国乙卷·高考真题)已知是偶函数,则(
)A. B. C.1 D.22.(2023·全国新Ⅰ卷·高考真题)设函数在区间上单调递减,则的取值范围是(
)A. B.C. D.3.(2022·北京·高考真题)已知函数,则对任意实数x,有(
)A. B.C. D.4.(2017·全国·高考真题)设函数则满足的x的取值范围是.5.(2016·北京·高考真题)下列函数中,在区间上为减函数的是A. B. C. D.6.(2015·江苏·高考真题)不等式的解集为.7.(2015·山东·高考真题)已知函数的定义域和值域都是,则.8.(2015·福建·高考真题)若函数满足,且在单调递增,则实数的最小值等于.考点02对数运算及指对互化1.(2024·全国甲卷·高考真题)已知且,则.2.(2023·北京·高考真题)已知函数,则.3.(2022·天津·高考真题)化简的值为(
)A.1 B.2 C.4 D.64.(2022·浙江·高考真题)已知,则(
)A.25 B.5 C. D.5.(2022·全国乙卷·高考真题)若是奇函数,则,.6.(2021·天津·高考真题)若,则(
)A. B. C.1 D.7.(2020·全国·高考真题)设,则(
)A. B. C. D.8.(2018·全国·高考真题)已知函数,若,则.9.(2016·浙江·高考真题)已知a>b>1.若logab+logba=,ab=ba,则a=,b=.10.(2015·浙江·高考真题)计算:,.11.(2015·浙江·高考真题)若,则.12.(2015·四川·高考真题)lg0.01+log216=.13.(2015·上海·高考真题)方程的解为.14.(2015·上海·高考真题)方程的解为.15.(2015·安徽·高考真题).考点03对数函数及其应用1.(2024·北京·高考真题)已知,是函数的图象上两个不同的点,则(
)A. B.C. D.2.(2024·全国新Ⅰ卷·高考真题)已知函数在R上单调递增,则a的取值范围是(
)A. B. C. D.3.(2020·全国新Ⅱ卷·高考真题)已知函数在上单调递增,则的取值范围是(
)A. B. C. D.4.(2020·全国·高考真题)设函数,则f(x)(
)A.是偶函数,且在单调递增 B.是奇函数,且在单调递减C.是偶函数,且在单调递增 D.是奇函数,且在单调递减5.(2020·北京·高考真题)函数的定义域是.6.(2015·重庆·高考真题)函数的定义域是A.B.C.D.7.(2015·四川·高考真题)设,都是不等于的正数,则“”是“”的A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件8.(2015·湖北·高考真题)函数的定义域为(
)A. B.C. D.9.(2015·北京·高考真题)如图,函数的图象为折线,则不等式的解集是
A. B.C. D.考点04幂函数1.(2024·天津·高考真题)设,则“”是“”的(
)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.(2023·北京·高考真题)下列函数中,在区间上单调递增的是(
)A. B.C. D.3.(2020·江苏·高考真题)已知y=f(x)是奇函数,当x≥0时,,则f(-8)的值是.考点05指对幂函数值大小比较1.(2024·天津·高考真题)若,则的大小关系为(
)A. B. C. D.2.(2023·全国甲卷·高考真题)已知函数.记,则(
)A. B. C. D.3.(2023·天津·高考真题)设,则的大小关系为(
)A. B.C. D.4.(2022·天津·高考真题)已知,,,则(
)A. B. C. D.5.(2022·全国甲卷·高考真题)已知,则(
)A. B. C. D.6.(2022·全国新Ⅰ卷·高考真题)设,则(
)A. B. C. D.7.(2021·天津·高考真题)设,则a,b,c的大小关系为(
)A. B. C. D.8.(2021·全国新Ⅱ卷·高考真题)已知,,,则下列判断正确的是(
)A. B. C. D.9.(2020·天津·高考真题)设,则的大小关系为(
)A. B. C. D.10.(2020·全国·高考真题)已知55<84,134<85.设a=log53,b=log85,c=log138,则(
)A.a<b<c B.b<a<c C.b<c<a D.c<a<b11.(2020·全国·高考真题)设,,,则(
)A. B. C. D.12.(2020·全国·高考真题)若,则(
)A. B. C. D.13.(2019·天津·高考真题)已知,,,则的大小关系为A. B.C. D.14.(2019·天津·高考真题)已知,,,则的大小关系为A. B.C. D.15.(2018·天津·高考真题)已知,则的大小关系为A. B. C. D.16.(2017·全国·高考真题)设x、y、z为正数,且,则A.2x<3y<5z B.5z<2x<3yC.3y<5z<2x D.3y<2x<5z17.(2016·全国·高考真题)已知,,,则A. B.C. D.18.(2016·全国·高考真题)已知,则A. B.C. D.19.(2015·重庆·高考真题)函数的定义域是A.B.C.D.20.(2015·陕西·高考真题)设,若,,,则下列关系式中正确的是A. B.C. D.21.(2015·山东·高考真题)设则的大小关系是A. B. C. D.考点06函数图象1.(2024·全国甲卷·高考真题)函数在区间的图象大致为(
)A. B.C. D.2.(2023·天津·高考真题)已知函数的部分图象如下图所示,则的解析式可能为(
)
A. B.C. D.3.(2022·全国乙卷·高考真题)如图是下列四个函数中的某个函数在区间的大致图像,则该函数是(
)A. B. C. D.4.(2022·全国甲卷·高考真题)函数在区间的图象大致为(
)A. B.C. D.5.(2022·天津·高考真题)函数的图像为(
)A. B.C. D.6.(2021·浙江·高考真题)已知函数,则图象为如图的函数可能是(
)A. B.C. D.7.(2020·天津·高考真题)函数的图象大致为(
)A. B.C. D.8.(2020·浙江·高考真题)函数y=xcosx+sinx在区间[–π,π]的图象大致为()A. B.C. D.9.(2019·浙江·高考真题)在同一直角坐标系中,函数且的图象可能是A. B.C. D.10.(2018·全国·高考真题)函数的图像大致为A. B.C. D.11.(2018·浙江·高考真题)函数y=的图象可能是A. B.C. D.12.(2018·全国·高考真题)函数的图像大致为()A. B.C. D.13.(2017·全国·高考真题)函数的部分图像大致为A.B.C. D.14.(2017·全国·高考真题)函数y=1+x+的部分图象大致为(
)A. B. C. D.15.(2015·安徽·高考真题)函数的图象如图所示,则下列结论成立的是
A.,,B.,,C.,,D.,,16.(2015·浙江·高考真题)函数(且)的图象可能为()A. B.C. D.考点07函数零点及其应用一、单选题1.(2024·全国新Ⅰ卷·高考真题)当时,曲线与的交点个数为(
)A.3 B.4 C.6 D.82.(2024·全国新Ⅱ卷·高考真题)设函数,,当时,曲线与恰有一个交点,则(
)A. B. C.1 D.23.(2024·全国新Ⅱ卷·高考真题)(多选)对于函数和,下列说法中正确的有(
)A.与有相同的零点 B.与有相同的最大值C.与有相同的最小正周期 D.与的图象有相同的对称轴4.(2021·天津·高考真题)设,函数,若在区间内恰有6个零点,则a的取值范围是(
)A. B.C. D.5.(2020·天津·高考真题)已知函数若函数恰有4个零点,则的取值范围是(
)A. B.C. D.6.(2019·全国·高考真题)函数在的零点个数为A.2 B.3 C.4 D.57.(2019·浙江·高考真题)已知,函数,若函数恰有三个零点,则A. B.C. D.8.(2014·北京·高考真题)已知函数,在下列区间中,包含零点的区间是A. B. C. D.9.(2018·全国·高考真题)已知函数.若g(x)存在2个零点,则a的取值范围是A.[–1,0) B.[0,+∞) C.[–1,+∞) D.[1,+∞)10.(2017·山东·高考真题)已知当时,函数的图象与的图象有且只有一个交点,则正实数m的取值范围是A. B.C. D.11.(2016·天津·高考真题)已知函数,.若在区间内没有零点,则的取值范围是A. B.C. D.12.(2016·天津·高考真题)已知函数(,且)在上单调递减,且关于x的方程恰有两个不相等的实数解,则的取值范围是A. B.[,] C.[,]{} D.[,){}13.(2016·天津·高考真题)已知函数,.若在区间内没有零点,则的取值范围是A. B. C. D.14.(2015·天津·高考真题)已知函数,函数,则函数的零点的个数为A.2 B.3 C.4 D.515.(2015·天津·高考真题)已知函数,函数,其中,若函数恰有4个零点,则的取值范围是()A. B. C. D.16.(2015·安徽·高考真题)下列函数中,既是偶函数又存在零点的是A. B. C. D.二、填空题17.(2024·全国甲卷·高考真题)曲线与在上有两个不同的交点,则的取值范围为.18.(2024·天津·高考真题)若函数恰有一个零点,则的取值范围为.19.(2023·天津·高考真题)设,函数,若恰有两个零点,则的取值范围为.20.(2023·全国新Ⅰ卷·高考真题)已知函数在区间有且仅有3个零点,则的取值范围是.21.(2022·天津·高考真题)设,对任意实数x,记.若至少有3个零点,则实数的取值范围为.22.(2022·北京·高考真题)若函数的一个零点为,则;.23.(2021·北京·高考真题)已知函数,给出下列四个结论:①若,恰有2个零点;②存在负数,使得恰有1个零点;③存在负数,使得恰有3个零点;④存在正数,使得恰有3个零点.其中所有正确结论的序号是.24.(2019·江苏·高考真题)设是定义在上的两个周期函数,的周期为4,的周期为2,且是奇函数.当时,,,其中.若在区间上,关于的方程有8个不同的实数根,则的取值范围是.25.(2018·全国·高考真题)函数在的零点个数为.26.(2018·浙江·高考真题)已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是.27.(2018·天津·高考真题)已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是.28.(2017·江苏·高考真题)设是定义在R且周期为1的函数,在区间上,其中集合,则方程的解的个数是29.(2016·江苏·高考真题)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.30.(2016·天津·高考真题)已知函数在R上单调递减,且关于x的方程恰有两个不相等的实数解,则a的取值范围是.31.(2015·江苏·高考真题)已知函数,,则方程实根的个数为32.(2015·湖北·高考真题)函数的零点个数为_________.33.(2015·湖北·高考真题)函数的零点个数为.34.(2015·安徽·高考真题)在平面直角坐标系中,若直线与函数的图像只有一个交点,则的值为.35.(2015·湖南·高考真题)已知,若存在实数,使函数有两个零点,则的取值范围是.36.(2015·湖南·高考真题)若函数有两个零点,则实数的取值范围是_____.考点08函数模型1.(2024·北京·高考真题)生物丰富度指数是河流水质的一个评价指标,其中分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d越大,水质越好.如果某河流治理前后的生物种类数没有变化,生物个体总数由变为,生物丰富度指数由提高到,则(
)A. B.C. D.2.(2022·北京·高考真题)在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T和的关系,其中T表示温度,单位是K;P表示压强,单位是.下列结论中正确的是(
)A.当,时,二氧化碳处于液态B.当,时,二氧化碳处于气态C.当,时,二氧化碳处于超临界状态D.当,时,二氧化碳处于超临界状态3.(2021·全国甲卷·高考真题)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V满足.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为(
)()A.1.5 B.1.2 C.0.8 D.0.64.(2019·北京·高考真题)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为A.1010.1 B.10.1 C.lg10.1 D.5.(2017·北京·高考真题)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是(参考数据:lg3≈0.48)A.1033 B.1053C.1073 D.1093专题14指数、对数、幂函数、函数图象、函数零点及函数模型的应用考点十年考情(2015-2024)命题趋势考点1指数函数及其应用(10年5考)2023·全国乙卷、2023·全国新Ⅰ卷、2022·北京卷2017·全国、2016·北京、2015·江苏、2015·山东卷、2015·福建卷掌握指数对数幂函数的图象与性质,会指数对数的相关运算,会指对幂函数值的大小比较,都是高考命题的方向掌握函数图象的判断方法掌握函数零点的定义,会用零点存在定理判断零点所在区间,会求解零点相关问题,也是高考命题的高频考点掌握函数模型及其应用考点2对数运算及指对互化(10年8考)2024·全国甲卷、2023·北京卷、2022·天津卷2022·浙江卷、2022·全国乙卷、2021·天津卷2020·全国卷、2018·全国卷、2016·浙江卷2015·浙江卷、2015·浙江卷、2015·四川卷2015·上海卷、2015·上海卷、2015·安徽卷考点3对数函数及其应用(10年3考)2024·北京卷、2024·全国新Ⅰ卷、2020·全国新Ⅱ卷2020·全国卷、2020·北京卷、2015·重庆卷2015·四川卷、2015·湖北卷、2015·北京卷考点4幂函数(10年3考)2024·天津卷、2023·北京卷、2020·江苏卷考点5指对幂函数值大小比较(10年10考)2024·天津卷、2023·全国甲卷、2023·天津卷2022·天津卷、2022·全国甲卷、2022·全国新Ⅰ卷2021·天津卷、2021·全国新Ⅱ卷、2020·天津卷2020·全国卷、2020·全国卷、2020·全国卷2019·天津卷、2019·天津卷、2018·天津卷2017·全国卷、2016·全国卷、2016·全国卷2015·重庆卷、2015·陕西卷、2015·山东卷考点6函数图象(10年8考)2024·全国甲卷、2023·天津卷、2022·全国乙卷2022·全国甲卷、2022·天津卷、2021·浙江卷2020·天津卷、2020·浙江卷、2019·浙江卷2018·全国卷、2018·浙江卷、2018·全国卷2017·全国卷、2017·全国卷、2015·安徽卷2015·浙江卷考点7函数零点及其应用(10年10考)2024·全国新Ⅰ卷、2024·全国新Ⅱ卷、2024·全国新Ⅱ卷、2024·全国甲卷、2024·天津卷、2023·天津卷、2023·全国新Ⅰ卷、2022·天津卷、2022·北京卷2021·北京卷、2021·天津卷、2020·天津卷2019·全国卷、2019·浙江卷、2019·江苏卷2018·全国卷、2018·浙江卷、2018·天津卷2018·全国卷、2017·山东卷、2017·江苏卷2016·江苏卷、2016·天津卷、2016·天津卷2016·天津卷、2016·天津卷、2015·天津卷2015·天津卷、2015·安徽卷、2015·江苏卷2015·湖北卷、2015·湖北卷、2015·安徽卷2015·湖南卷、2015·湖南卷考点8函数模型(10年5考)2024·北京卷、2022·北京卷、2021·全国甲卷2019·北京卷、2017·北京卷考点01指数函数及其应用1.(2023·全国乙卷·高考真题)已知是偶函数,则(
)A. B. C.1 D.2【答案】D【分析】根据偶函数的定义运算求解.【详解】因为为偶函数,则,又因为不恒为0,可得,即,则,即,解得.故选:D.2.(2023·全国新Ⅰ卷·高考真题)设函数在区间上单调递减,则的取值范围是(
)A. B.C. D.【答案】D【分析】利用指数型复合函数单调性,判断列式计算作答.【详解】函数在R上单调递增,而函数在区间上单调递减,则有函数在区间上单调递减,因此,解得,所以的取值范围是.故选:D3.(2022·北京·高考真题)已知函数,则对任意实数x,有(
)A. B.C. D.【答案】C【分析】直接代入计算,注意通分不要计算错误.【详解】,故A错误,C正确;,不是常数,故BD错误;故选:C.4.(2017·全国·高考真题)设函数则满足的x的取值范围是.【答案】【详解】由题意得:当时,恒成立,即;当时,恒成立,即;当时,,即.综上,x的取值范围是.5.(2016·北京·高考真题)下列函数中,在区间上为减函数的是A. B. C. D.【答案】D【详解】试题分析:在区间上为增函数;在区间上先增后减;在区间上为增函数;在区间上为减函数,选D.考点:函数增减性6.(2015·江苏·高考真题)不等式的解集为.【答案】【详解】试题分析:本题是一个指数型函数式的大小比较,这种题目需要先把底数化为相同的形式,即底数化为2,根据函数是一个递增函数,写出指数之间的关系得到未知数的范围.,是一个递增函数;故答案为.考点:指数函数的单调性和特殊性7.(2015·山东·高考真题)已知函数的定义域和值域都是,则.【答案】【详解】若,则在上为增函数,所以,此方程组无解;若,则在上为减函数,所以,解得,所以.考点:指数函数的性质.8.(2015·福建·高考真题)若函数满足,且在单调递增,则实数的最小值等于.【答案】【详解】试题分析:根据可知函数的图像关于直线对称,可知,从而可以确定函数在上是增函数,从而有,所以,故的最小值等于.考点:函数图像的对称性,函数的单调性.【方法点睛】该题根据题中的条件确定好函数本身的单调区间,根据函数在函数增区间的所有子区间上是增函数,从而求得参数的取值范围,关键是根据条件,得出函数图像的对称性,确定出函数图像的对称轴,从而得到函数的增区间,从而根据集合间的包含关系,从而确定出参数的取值范围.考点02对数运算及指对互化1.(2024·全国甲卷·高考真题)已知且,则.【答案】64【分析】将利用换底公式转化成来表示即可求解.【详解】由题,整理得,或,又,所以,故故答案为:64.2.(2023·北京·高考真题)已知函数,则.【答案】1【分析】根据给定条件,把代入,利用指数、对数运算计算作答.【详解】函数,所以.故答案为:13.(2022·天津·高考真题)化简的值为(
)A.1 B.2 C.4 D.6【答案】B【分析】根据对数的性质可求代数式的值.【详解】原式,故选:B4.(2022·浙江·高考真题)已知,则(
)A.25 B.5 C. D.【答案】C【分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出.【详解】因为,,即,所以.故选:C.5.(2022·全国乙卷·高考真题)若是奇函数,则,.【答案】;.【分析】根据奇函数的定义即可求出.【详解】[方法一]:奇函数定义域的对称性若,则的定义域为,不关于原点对称若奇函数的有意义,则且且,函数为奇函数,定义域关于原点对称,,解得,由得,,,故答案为:;.[方法二]:函数的奇偶性求参函数为奇函数[方法三]:因为函数为奇函数,所以其定义域关于原点对称.由可得,,所以,解得:,即函数的定义域为,再由可得,.即,在定义域内满足,符合题意.故答案为:;.6.(2021·天津·高考真题)若,则(
)A. B. C.1 D.【答案】C【分析】由已知表示出,再由换底公式可求.【详解】,,.故选:C.7.(2020·全国·高考真题)设,则(
)A. B. C. D.【答案】B【分析】根据已知等式,利用指数对数运算性质即可得解【详解】由可得,所以,所以有,故选:B.【点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.8.(2018·全国·高考真题)已知函数,若,则.【答案】-7【详解】分析:首先利用题的条件,将其代入解析式,得到,从而得到,从而求得,得到答案.详解:根据题意有,可得,所以,故答案是.点睛:该题考查的是有关已知某个自变量对应函数值的大小,来确定有关参数值的问题,在求解的过程中,需要将自变量代入函数解析式,求解即可得结果,属于基础题目.9.(2016·浙江·高考真题)已知a>b>1.若logab+logba=,ab=ba,则a=,b=.【答案】【详解】试题分析:设,因为,因此指数运算,对数运算.在解方程时,要注意,若没注意到,方程的根有两个,由于增根导致错误10.(2015·浙江·高考真题)计算:,.【答案】【详解】;.考点:对数运算11.(2015·浙江·高考真题)若,则.【答案】【详解】∵,∴,∴.考点:对数的计算12.(2015·四川·高考真题)lg0.01+log216=.【答案】2【详解】lg0.01+log216=-2+4=2考点:本题考查对数的概念、对数运算的基础知识,考查基本运算能力.13.(2015·上海·高考真题)方程的解为.【答案】2【详解】依题意,所以,令,所以,解得或,当时,,所以,而,所以不合题意,舍去;当时,,所以,,,所以满足条件,所以是原方程的解.考点:对数方程.14.(2015·上海·高考真题)方程的解为.【答案】【详解】设,则考点:解指对数不等式15.(2015·安徽·高考真题).【答案】-1【详解】原式=考点:本题主要考查对数运算公式和指数幂运算公式.考点03对数函数及其应用1.(2024·北京·高考真题)已知,是函数的图象上两个不同的点,则(
)A. B.C. D.【答案】B【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB;举例判断CD即可.【详解】由题意不妨设,因为函数是增函数,所以,即,对于选项AB:可得,即,根据函数是增函数,所以,故B正确,A错误;对于选项D:例如,则,可得,即,故D错误;对于选项C:例如,则,可得,即,故C错误,故选:B.2.(2024·全国新Ⅰ卷·高考真题)已知函数在R上单调递增,则a的取值范围是(
)A. B. C. D.【答案】B【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【详解】因为在上单调递增,且时,单调递增,则需满足,解得,即a的范围是.故选:B.3.(2020·全国新Ⅱ卷·高考真题)已知函数在上单调递增,则的取值范围是(
)A. B. C. D.【答案】D【分析】首先求出的定义域,然后求出的单调递增区间即可.【详解】由得或所以的定义域为因为在上单调递增所以在上单调递增所以故选:D【点睛】在求函数的单调区间时一定要先求函数的定义域.4.(2020·全国·高考真题)设函数,则f(x)(
)A.是偶函数,且在单调递增 B.是奇函数,且在单调递减C.是偶函数,且在单调递增 D.是奇函数,且在单调递减【答案】D【分析】根据奇偶性的定义可判断出为奇函数,排除AC;当时,利用函数单调性的性质可判断出单调递增,排除B;当时,利用复合函数单调性可判断出单调递减,从而得到结果.【详解】由得定义域为,关于坐标原点对称,又,为定义域上的奇函数,可排除AC;当时,,在上单调递增,在上单调递减,在上单调递增,排除B;当时,,在上单调递减,在定义域内单调递增,根据复合函数单调性可知:在上单调递减,D正确.故选:D.【点睛】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据与的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.5.(2020·北京·高考真题)函数的定义域是.【答案】【分析】根据分母不为零、真数大于零列不等式组,解得结果.【详解】由题意得,故答案为:【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.6.(2015·重庆·高考真题)函数的定义域是A.B.C.D.【答案】D【详解】由解得或,故选D.考点:函数的定义域与二次不等式.7.(2015·四川·高考真题)设,都是不等于的正数,则“”是“”的A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件【答案】B【详解】若,则,从而有,故为充分条件.若不一定有,比如.,从而不成立.故选B.考点:命题与逻辑.8.(2015·湖北·高考真题)函数的定义域为(
)A. B.C. D.【答案】C【分析】根据根号下非负及真数大于零可得函数的定义域.【详解】由函数的表达式可知,函数的定义域应满足条件:,解之得,即函数的定义域为,故选:C.9.(2015·北京·高考真题)如图,函数的图象为折线,则不等式的解集是
A. B.C. D.【答案】C【详解】试题分析:如下图所示,画出的函数图象,从而可知交点,∴不等式的解集为,故选C.
考点:1.对数函数的图象;2.函数与不等式;3.数形结合的数学思想.考点04幂函数1.(2024·天津·高考真题)设,则“”是“”的(
)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】C【分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件.【详解】根据立方的性质和指数函数的性质,和都当且仅当,所以二者互为充要条件.故选:C.2.(2023·北京·高考真题)下列函数中,在区间上单调递增的是(
)A. B.C. D.【答案】C【分析】利用基本初等函数的单调性,结合复合函数的单调性判断ABC,举反例排除D即可.【详解】对于A,因为在上单调递增,在上单调递减,所以在上单调递减,故A错误;对于B,因为在上单调递增,在上单调递减,所以在上单调递减,故B错误;对于C,因为在上单调递减,在上单调递减,所以在上单调递增,故C正确;对于D,因为,,显然在上不单调,D错误.故选:C.3.(2020·江苏·高考真题)已知y=f(x)是奇函数,当x≥0时,,则f(-8)的值是.【答案】【分析】先求,再根据奇函数求【详解】,因为为奇函数,所以故答案为:【点睛】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题.考点05指对幂函数值大小比较1.(2024·天津·高考真题)若,则的大小关系为(
)A. B. C. D.【答案】B【分析】利用指数函数和对数函数的单调性分析判断即可.【详解】因为在上递增,且,所以,所以,即,因为在上递增,且,所以,即,所以,故选:B2.(2023·全国甲卷·高考真题)已知函数.记,则(
)A. B. C. D.【答案】A【分析】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可.【详解】令,则开口向下,对称轴为,因为,而,所以,即由二次函数性质知,因为,而,即,所以,综上,,又为增函数,故,即.故选:A.3.(2023·天津·高考真题)设,则的大小关系为(
)A. B.C. D.【答案】D【分析】根据对应幂、指数函数的单调性判断大小关系即可.【详解】由在R上递增,则,由在上递增,则.所以.故选:D4.(2022·天津·高考真题)已知,,,则(
)A. B. C. D.【答案】C【分析】利用幂函数、对数函数的单调性结合中间值法可得出、、的大小关系.【详解】因为,故.故答案为:C.5.(2022·全国甲卷·高考真题)已知,则(
)A. B. C. D.【答案】A【分析】法一:根据指对互化以及对数函数的单调性即可知,再利用基本不等式,换底公式可得,,然后由指数函数的单调性即可解出.【详解】[方法一]:(指对数函数性质)由可得,而,所以,即,所以.又,所以,即,所以.综上,.[方法二]:【最优解】(构造函数)由,可得.根据的形式构造函数,则,令,解得,由知.在上单调递增,所以,即,又因为,所以.故选:A.【点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用的形式构造函数,根据函数的单调性得出大小关系,简单明了,是该题的最优解.6.(2022·全国新Ⅰ卷·高考真题)设,则(
)A. B. C. D.【答案】C【分析】构造函数,导数判断其单调性,由此确定的大小.【详解】方法一:构造法设,因为,当时,,当时,所以函数在单调递减,在上单调递增,所以,所以,故,即,所以,所以,故,所以,故,设,则,令,,当时,,函数单调递减,当时,,函数单调递增,又,所以当时,,所以当时,,函数单调递增,所以,即,所以故选:C.方法二:比较法解:,,,①,令则,故在上单调递减,可得,即,所以;②,令则,令,所以,所以在上单调递增,可得,即,所以在上单调递增,可得,即,所以故7.(2021·天津·高考真题)设,则a,b,c的大小关系为(
)A. B. C. D.【答案】D【分析】根据指数函数和对数函数的性质求出的范围即可求解.【详解】,,,,,,.故选:D.8.(2021·全国新Ⅱ卷·高考真题)已知,,,则下列判断正确的是(
)A. B. C. D.【答案】C【分析】对数函数的单调性可比较、与的大小关系,由此可得出结论.【详解】,即.故选:C.9.(2020·天津·高考真题)设,则的大小关系为(
)A. B. C. D.【答案】D【分析】利用指数函数与对数函数的性质,即可得出的大小关系.【详解】因为,,,所以.故选:D.【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:,当时,函数递增;当时,函数递减;(2)利用对数函数的单调性:,当时,函数递增;当时,函数递减;(3)借助于中间值,例如:0或1等.10.(2020·全国·高考真题)已知55<84,134<85.设a=log53,b=log85,c=log138,则(
)A.a<b<c B.b<a<c C.b<c<a D.c<a<b【答案】A【分析】由题意可得、、,利用作商法以及基本不等式可得出、的大小关系,由,得,结合可得出,由,得,结合,可得出,综合可得出、、的大小关系.【详解】由题意可知、、,,;由,得,由,得,,可得;由,得,由,得,,可得.综上所述,.故选:A.【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.11.(2020·全国·高考真题)设,,,则(
)A. B. C. D.【答案】A【分析】分别将,改写为,,再利用单调性比较即可.【详解】因为,,所以.故选:A.【点晴】本题考查对数式大小的比较,考查学生转化与化归的思想,是一道中档题.12.(2020·全国·高考真题)若,则(
)A. B. C. D.【答案】A【分析】将不等式变为,根据的单调性知,以此去判断各个选项中真数与的大小关系,进而得到结果.【详解】由得:,令,为上的增函数,为上的减函数,为上的增函数,,,,,则A正确,B错误;与的大小不确定,故CD无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到的大小关系,考查了转化与化归的数学思想.13.(2019·天津·高考真题)已知,,,则的大小关系为A. B.C. D.【答案】A【分析】利用利用等中间值区分各个数值的大小.【详解】;;.故.故选A.【点睛】利用指数函数、对数函数的单调性时要根据底数与的大小区别对待.14.(2019·天津·高考真题)已知,,,则的大小关系为A. B.C. D.【答案】A【解析】利用等中间值区分各个数值的大小.【详解】,,,故,所以.故选A.【点睛】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较.15.(2018·天津·高考真题)已知,则的大小关系为A. B. C. D.【答案】D【详解】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.详解:由题意可知:,即,,即,,即,综上可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.16.(2017·全国·高考真题)设x、y、z为正数,且,则A.2x<3y<5z B.5z<2x<3yC.3y<5z<2x D.3y<2x<5z【答案】D【详解】令,则,,∴,则,,则,故选D.点睛:对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.17.(2016·全国·高考真题)已知,,,则A. B.C. D.【答案】A【详解】因为,,,因为幂函数在R上单调递增,所以,因为指数函数在R上单调递增,所以,即b<a<c.故选:A.18.(2016·全国·高考真题)已知,则A. B.C. D.【答案】A【详解】因为,且幂函数在上单调递增,所以b<a<c.故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.19.(2015·重庆·高考真题)函数的定义域是A.B.C.D.【答案】D【详解】由解得或,故选D.考点:函数的定义域与二次不等式.20.(2015·陕西·高考真题)设,若,,,则下列关系式中正确的是A. B.C. D.【答案】C【详解】,,,函数在上单调递增,因为,所以,所以,故选C.【考点定位】1、基本不等式;2、基本初等函数的单调性.21.(2015·山东·高考真题)设则的大小关系是A. B. C. D.【答案】C【详解】由在区间是单调减函数可知,,又,故选.考点:1.指数函数的性质;2.函数值比较大小.考点06函数图象1.(2024·全国甲卷·高考真题)函数在区间的图象大致为(
)A. B.C. D.【答案】B【分析】利用函数的奇偶性可排除A、C,代入可得,可排除D.【详解】,又函数定义域为,故该函数为偶函数,可排除A、C,又,故可排除D.故选:B.2.(2023·天津·高考真题)已知函数的部分图象如下图所示,则的解析式可能为(
)
A. B.C. D.【答案】D【分析】由图知函数为偶函数,应用排除,先判断B中函数的奇偶性,再判断A、C中函数在上的函数符号排除选项,即得答案.【详解】由图知:函数图象关于y轴对称,其为偶函数,且,由且定义域为R,即B中函数为奇函数,排除;当时、,即A、C中上函数值为正,排除;故选:D3.(2022·全国乙卷·高考真题)如图是下列四个函数中的某个函数在区间的大致图像,则该函数是(
)A. B. C. D.【答案】A【分析】由函数图像的特征结合函数的性质逐项排除即可得解.【详解】设,则,故排除B;设,当时,,所以,故排除C;设,则,故排除D.故选:A.4.(2022·全国甲卷·高考真题)函数在区间的图象大致为(
)A. B.C. D.【答案】A【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令,则,所以为奇函数,排除BD;又当时,,所以,排除C.故选:A.5.(2022·天津·高考真题)函数的图像为(
)A. B.C. D.【答案】D【分析】分析函数的定义域、奇偶性、单调性及其在上的函数值符号,结合排除法可得出合适的选项.【详解】函数的定义域为,且,函数为奇函数,A选项错误;又当时,,C选项错误;当时,函数单调递增,故B选项错误;故选:D.6.(2021·浙江·高考真题)已知函数,则图象为如图的函数可能是(
)A. B.C. D.【答案】D【分析】由函数的奇偶性可排除A、B,结合导数判断函数的单调性可判断C,即可得解.【详解】对于A,,该函数为非奇非偶函数,与函数图象不符,排除A;对于B,,该函数为非奇非偶函数,与函数图象不符,排除B;对于C,,则,当时,,与图象不符,排除C.故选:D.7.(2020·天津·高考真题)函数的图象大致为(
)A. B.C. D.【答案】A【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式可得:,则函数为奇函数,其图象关于坐标原点对称,选项CD错误;当时,,选项B错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.8.(2020·浙江·高考真题)函数y=xcosx+sinx在区间[–π,π]的图象大致为()A. B.C. D.【答案】A【分析】首先确定函数的奇偶性,然后结合函数在处的函数值排除错误选项即可确定函数的图象.【详解】因为,则,即题中所给的函数为奇函数,函数图象关于坐标原点对称,据此可知选项CD错误;且时,,据此可知选项B错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.9.(2019·浙江·高考真题)在同一直角坐标系中,函数且的图象可能是A. B.C. D.【答案】D【解析】本题通过讨论的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当时,函数过定点且单调递减,则函数过定点且单调递增,函数过定点且单调递减,D选项符合;当时,函数过定点且单调递增,则函数过定点且单调递减,函数过定点且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论的不同取值范围,认识函数的单调性.10.(2018·全国·高考真题)函数的图像大致为A. B.C. D.【答案】D【详解】分析:根据函数图象的特殊点,利用函数的导数研究函数的单调性,由排除法可得结果.详解:函数过定点,排除,求得函数的导数,由得,得或,此时函数单调递增,排除,故选D.点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.11.(2018·浙江·高考真题)函数y=的图象可能是A. B.C. D.【答案】D【详解】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.12.(2018·全国·高考真题)函数的图像大致为()A. B.C. D.【答案】B【详解】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.13.(2017·全国·高考真题)函数的部分图像大致为A.B.C. D.【答案】C【详解】由题意知,函数为奇函数,故排除B;当时,,故排除D;当时,,故排除A.故选C.点睛:函数图像问题首先关注定义域,从图像的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择项,从图像的最高点、最低点,分析函数的最值、极值,利用特值检验,较难的需要研究单调性、极值等,从图像的走向趋势,分析函数的单调性、周期性等.14.(2017·全国·高考真题)函数y=1+x+的部分图象大致为(
)A. B. C. D.【答案】D【解析】由题意比较函数的性质及函数图象的特征,逐项判断即可得解.【详解】当x=1时,y=1+1+sin1=2+sin1>2,排除A、C;当x→+∞时,y→+∞,排除B.故选:D.【点睛】本题考查了函数图象的识别,抓住函数图象的差异是解题关键,属于基础题.15.(2015·安徽·高考真题)函数的图象如图所示,则下列结论成立的是
A.,,B.,,C.,,D.,,【答案】C【详解】试题分析:函数在处无意义,由图像看在轴右侧,所以,,由即,即函数的零点,故选C.考点:函数的图像16.(2015·浙江·高考真题)函数(且)的图象可能为()A. B.C. D.【答案】D【详解】因为,故函数是奇函数,所以排除A,B;取,则,故选D.考点:1.函数的基本性质;2.函数的图象.考点07函数零点及其应用一、单选题1.(2024·全国新Ⅰ卷·高考真题)当时,曲线与的交点个数为(
)A.3 B.4 C.6 D.8【答案】C【分析】画出两函数在上的图象,根据图象即可求解【详解】因为函数的的最小正周期为,函数的最小正周期为,所以在上函数有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C2.(2024·全国新Ⅱ卷·高考真题)设函数,,当时,曲线与恰有一个交点,则(
)A. B. C.1 D.2【答案】D【分析】解法一:令,分析可知曲线与恰有一个交点,结合偶函数的对称性可知该交点只能在y轴上,即可得,并代入检验即可;解法二:令,可知为偶函数,根据偶函数的对称性可知的零点只能为0,即可得,并代入检验即可.【详解】解法一:令,即,可得,令,原题意等价于当时,曲线与恰有一个交点,注意到均为偶函数,可知该交点只能在y轴上,可得,即,解得,若,令,可得因为,则,当且仅当时,等号成立,可得,当且仅当时,等号成立,则方程有且仅有一个实根0,即曲线与恰有一个交点,所以符合题意;综上所述:.解法二:令,原题意等价于有且仅有一个零点,因为,则为偶函数,根据偶函数的对称性可知的零点只能为0,即,解得,若,则,又因为当且仅当时,等号成立,可得,当且仅当时,等号成立,即有且仅有一个零点0,所以符合题意;故选:D.3.(2024·全国新Ⅱ卷·高考真题)(多选)对于函数和,下列说法中正确的有(
)A.与有相同的零点 B.与有相同的最大值C.与有相同的最小正周期 D.与的图象有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令,解得,即为零点,令,解得,即为零点,显然零点不同,A选项错误;B选项,显然,B选项正确;C选项,根据周期公式,的周期均为,C选项正确;D选项,根据正弦函数的性质的对称轴满足,的对称轴满足,显然图像的对称轴不同,D选项错误.故选:BC4.(2021·天津·高考真题)设,函数,若在区间内恰有6个零点,则a的取值范围是(
)A. B.C. D.【答案】A【分析】由最多有2个根,可得至少有4个根,分别讨论当和时两个函数零点个数情况,再结合考虑即可得出.【详解】最多有2个根,所以至少有4个根,由可得,由可得,(1)时,当时,有4个零点,即;当,有5个零点,即;当,有6个零点,即;(2)当时,,,当时,,无零点;当时,,有1个零点;当时,令,则,此时有2个零点;所以若时,有1个零点.综上,要使在区间内恰有6个零点,则应满足或或,则可解得a的取值范围是.【点睛】关键点睛:解决本题的关键是分成和两种情况分别讨论两个函数的零点个数情况.5.(2020·天津·高考真题)已知函数若函数恰有4个零点,则的取值范围是(
)A. B.C. D.【答案】D【分析】由,结合已知,将问题转化为与有个不同交点,分三种情况,数形结合讨论即可得到答案.【详解】注意到,所以要使恰有4个零点,只需方程恰有3个实根即可,令,即与的图象有个不同交点.因为,当时,此时,如图1,与有个不同交点,不满足题意;当时,如图2,此时与恒有个不同交点,满足题意;当时,如图3,当与相切时,联立方程得,令得,解得(负值舍去),所以.综上,的取值范围为.故选:D.【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题.6.(2019·全国·高考真题)函数在的零点个数为A.2 B.3 C.4 D.5【答案】B【解析】令,得或,再根据x的取值范围可求得零点.【详解】由,得或,,.在的零点个数是3,故选B.【点睛】本题考查在一定范围内的函数的零点个数,渗透了直观想象和数学运算素养.采取特殊值法,利用数形结合和方程思想解题.7.(2019·浙江·高考真题)已知,函数,若函数恰有三个零点,则A. B.C. D.【答案】C【分析】当时,最多一个零点;当时,,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得.【详解】当时,,得;最多一个零点;当时,,,当,即时,,在,上递增,最多一个零点.不合题意;当,即时,令得,,函数递增,令得,,函数递减;函数最多有2个零点;根据题意函数恰有3个零点函数在上有一个零点,在,上有2个零点,如图:且,解得,,.故选.
【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.8.(2014·北京·高考真题)已知函数,在下列区间中,包含零点的区间是A. B. C. D.【答案】C【详解】因为,,所以由根的存在性定理可知:选C.考点:本小题主要考查函数的零点知识,正确理解零点定义及根的存在性定理是解答好本类题目的关键.9.(2018·全国·高考真题)已知函数.若g(x)存在2个零点,则a的取值范围是A.[–1,0) B.[0,+∞) C.[–1,+∞) D.[1,+∞)【答案】C【详解】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.10.(2017·山东·高考真题)已知当时,函数的图象与的图象有且只有一个交点,则正实数m的取值范围是A. B.C. D.【答案】B【详解】当时,,单调递减,且,单调递增,且,此时有且仅有一个交点;当时,,在上单调递增,所以要有且仅有一个交点,需选B.【名师点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.11.(2016·天津·高考真题)已知函数,.若在区间内没有零点,则的取值范围是A. B.C. D.【答案】D【详解】,,所以,因此,选:D.12.(2016·天津·高考真题)已知函数(,且)在上单调递减,且关于x的方程恰有两个不相等的实数解,则的取值范围是A. B.[,] C.[,]{} D.[,){}【答案】C【详解】试题分析:由在上单调递减可知,由方程恰好有两个不相等的实数解,可知,,又时,抛物线与直线相切,也符合题意,∴实数的取值范围是,故选C.【考点】函数性质综合应用【名师点睛】已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.13.(2016·天津·高考真题)已知函数,.若在区间内没有零点,则的取值范围是A. B. C. D.【答案】D【分析】先把化成,求出的零点的一般形式为,根据在区间内没有零点可得关于的不等式组,结合为整数可得其相应的取值,从而得到所求的取值范围.【详解】由题设有,令,则有即.因为在区间内没有零点,故存在整数,使得,即,因为,所以且,故或,所以或,故选:D.【点睛】本题考查三角函数在给定范围上的零点的存在性问题,此类问题可转化为不等式组的整数解问题,本题属于难题.14.(2015·天津·高考真题)已知函数,函数,则函数的零点的个数为A.2 B.3 C.4 D.5【答案】A【详解】当时,所以,,此时函数的小于零的零点为;当时,,函数无零点;当时,,,函数大于2的零点为,综上可得函数的零点的个数为2.故选A.考点:本题主要考查分段函数、函数零点及学生分析问题解决问题的能力.15.(2015·天津·高考真题)已知函数,函数,其中,若函数恰有4个零点,则的取值范围是()A. B. C. D.【答案】D【详解】函数恰有4个零点,即方程,即有4个不同的实数根,即直线与函数的图象有四个不同的交点.又做出该函数的图象如图所示,由图得,当时,直线与函数的图象有4个不同的交点,故函数恰有4个零点时,b的取值范围是故选D.考点:1、分段函数;2、函数的零点.【方法点晴】本题主要考查的是分段函数和函数的零点,属于难题.已知函数的零点个数,一般利用数形结合思想转化为两个函数的图像的交点个数问题,作图时一定要保证图形准确,否则很容易出现错误.16.(2015·安徽·高考真题)下列函数中,既是偶函数又存在零点的是A. B. C. D.【答案】A【详解】由选项可知,项均不是偶函数,故排除,项是偶函数,但项与轴没有交点,即项的函数不存在零点,故选A.考点:1.函数的奇偶性;2.函数零点的概念.二、填空题17.(2024·全国甲卷·高考真题)曲线与在上有两个不同的交点,则的取值范围为.【答案】【分析】将函数转化为方程,令,分离参数,构造新函数结合导数求得单调区间,画出大致图形数形结合即可求解.【详解】令,即,令则,令得,当时,,单调递减,当时,,单调递增,,因为曲线与在上有两个不同的交点,所以等价于与有两个交点,所以.故答案为:18.(2024·天津·高考真题)若函数恰有一个零点,则的取值范围为.【答案】【分析】结合函数零点与两函数的交点的关系,构造函数与,则两函数图象有唯一交点,分、与进行讨论,当时,计算函数定义域可得或,计算可得时,两函数在轴左侧有一交点,则只需找到当时,在轴右侧无交点的情况即可得;当时,按同一方式讨论即可得.【详解】令,即,由题可得,当时,,有,则,不符合要求,舍去;当时,则,即函数与函数有唯一交点,由,可得或,当时,则,则,即,整理得,当时,即,即,当,或(正值舍去),当时,或,有两解,舍去,即当时,在时有唯一解,则当时,在时需无解,当,且时,由函数关于对称,令,可得或,且函数在上单调递减,在上单调递增,令,即,故时,图象为双曲线右支的轴上方部分向右平移所得,由的渐近线方程为,即部分的渐近线方程为,其斜率为,又,即在时的斜率,令,可得或(舍去),且函数在上单调递增,故有,解得,故符合要求;当时,则,即函数与函数有唯一交点,由,可得或,当时,则,则,即,整理得,当时,即,即,当,(负值舍去)或,当时,或,有两解,舍去,即当时,在时有唯一解,则当时,在时需无解,当,且时,由函数关于对称,令,可得或,且函数在上单调递减,在上单调递增,同理可得:时,图象为双曲线左支的轴上方部分向左平移所得,部分的渐近线方程为,其斜率为,又,即在时的斜率,令,可得或(舍去),且函数在上单调递减,故有,解得,故符合要求;综上所述,.故答案为:.【点睛】关键点点睛:本题关键点在于将函数的零点问题转化为函数与函数的交点问题,从而可将其分成两个函数研究.19.(2023·天津·高考真题)设,函数,若恰有两个零点,则的取值范围为.【答案】【分析】根据绝对值的意义,去掉绝对值,求出零点,再根据根存在的条件即可判断的取值范围.【详解】(1)当时,,即,若时,,此时成立;若时,或,若方程有一根为,则,即且;若方程有一根为,则,解得:且;若时,,此时成立.(2)当时,,即,若时,,显然不成立;若时,或,若方程有一根为,则,即;若方程有一根为,则,解得:;若时,,显然不成立;综上,当时,零点为,;当时,零点为,;当时,只有一个零点;当时,零点为,;当时,只有一个零点;当时,零点为,;当时,零点为.所以,当函数有两个零点时,且.故答案为:.【点睛】本题的解题关键是根据定义去掉绝对值,求出方程的根,再根据根存在的条件求出对应的范围,然后根据范围讨论根(或零点)的个数,从而解出.20.(2023·全国新Ⅰ卷·高考真题)已知函数在区间有且仅有3个零点,则的取值范围是.【答案】【分析】令,得有3个根,从而结合余弦函数的图像性质即可得解.【详解】因为,所以,令,则有3个根,令,则有3个根,其中,结合余弦函数的图像性质可得,故,故答案为:.21.(2022·天津·高考真题)设,对任意实数x,记.若至少有3个零点,则实数的取值范围为.【答案】【分析】设,,分析可知函数至少有一个零点,可得出,求出的取值范围,然后对实数的取值范围进行分类讨论,根据题意可得出关于实数的不等式,综合可求得实数的取值范围.【详解】设,,由可得.要使得函数至少有个零点,则函数至少有一个零点,则,解得或.①当时,,作出函数、的图象如下图所示:此时函数只有两个零点,不合乎题意;②当时,设函数的两个零点分别为、,要使得函数至少有个零点,则,所以,,解得;③当时,,作出函数、的图象如下图所示:由图可知,函数的零点个数为,合乎题意;④当时,设函数的两个零点分别为、,要使得函数至少有个零点,则,可得,解得,此时.综上所述,实数的取值范围是.故答案为:.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.22.(2022·北京·高考真题)若函数的一个零点为,则;.【答案】1【分析】先代入零点,求得A的值,再将函数化简为,代入自变量,计算即可.【详解】∵,∴∴故答案为:1,23.(2021·北京·高考真题)已知函数,给出下列四个结论:①若,恰有2个零点;②存在负数,使得恰有1个零点;③存在负数,使得恰有3个零点;④存在正数,使得恰有3个零点.其中所有正确结论的序号是.【答案】①②④【分析】由可得出,考查直线与曲线的左、右支分别相切的情形,利用方程思想以及数形结合可判断各选项的正误.【详解】对于①,当时,由,可得或,①正确;对于②,考查直线与曲线相切于点,对函数求导得,由题意可得,解得,所以,存在,使得只有一个零点,②正确;对于③,当直线过点时,,解得,所以,当时,直线与曲线有两个交点,若函数有三个零点,则直线与曲线有两个交点,直线与曲线有一个交点,所以,,此不等式无解,因此,不存在,使得函数有三个零点,③错误;对于④,考查直线与曲线相切于点,对函数求导得,由题意可得,解得,所以,当时,函数有三个零点,④正确.故答案为:①②④.【点睛】思路点睛:已知函数的零点或方程的根的情况,求解参数的取值范围问题的本质都是研究函数的零点问题,求解此类问题的一般步骤:(1)转化,即通过构造函数,把问题转化成所构造函数的零点问题;(2)列式,即根据函数的零点存在定理或结合函数的图象列出关系式;(3)得解,即由列出的式子求出参数的取值范围.24.(2019·江苏·高考真题)设是定义在上的两个周期函数,的周期为4,的周期为2,且是奇函数.当时,,,其中.若在区间上,关于的方程有8个不同的实数根,则的取值范围是.【答案】.【分析】分别考查函数和函数图像的性质,考查临界条件确定k的取值范围即可.【详解】当时,即又为奇函数,其图象关于原点对称,其周期为,如图,函数与的图象,要使在上有个实根,只需二者图象有个交点即可.
当时,函数与的图象有个交点;当时,的图象为恒过点的直线,只需函数与的图象有个交点.当与图象相切时,圆心到直线的距离为,即,得,函数与的图象有个交点;当过点时,函数与的图象有个交点,此时,得.综上可知,满足在上有个实根的的取值范围为.【点睛】本题考点为参数的取值范围,侧重函数方程的多个实根,难度较大.不能正确画出函数图象的交点而致误,根据函数的周期性平移图象,找出两个函数图象相切或相交的临界交点个数,从而确定参数的取值范围.25.(2018·全国·高考真题)函数在的零点个数为.【答案】【分析】方法一:求出的范围,再由函数值为零,得到的取值即得零点个数.【详解】[方法一]:【最优解】由题可知,或解得,或故有3个零点.故答案为:.方法二:令,即,解得,,分别令,得,所以函数在的零点的个数为3.故答案为:.【整体点评】方法一:先求出的范围,再根据余弦函数在该范围内的零点,从而解出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024无财产瓜分离婚协议示范文本
- DB11∕T 1717-2020 动物实验管理与技术规范
- DB11∕T 1601-2018 毛白杨繁育技术规程
- 2024设备维护与保养协议范本
- 2024年专业收银员岗位聘用协议样本
- 文书模板-保安服装协议书
- 第3课 秦统一多民族封建国家的建立(课件)-2024-2025学年统编版高一历史上册
- 2024零售业导购人员劳务协议模板
- 2024大型车融资租赁业务协议样本
- 2024年度企业私人物流服务协议样本
- 基本函数的导数表
- 酒店的基本概念
- 重点但位消防安全标准化管理评分细则自评表
- 挂牌仪式流程方案
- 传输s385v200v210安装手册
- 风险调查表(企业财产保险)
- 农业信息技术 chapter5 地理信息系统
- 浅谈新形势下加强企业税务管理的对策研究
- 必看!设备管理必须要懂的一、二、三、四、五
- 空冷岛专题(控制方案、谐波及变压器容量选择)
- 结合子的机械加工工艺规程及铣槽的夹具设计
评论
0/150
提交评论