版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长能构成等腰三角形的概率是()A. B. C. D.2.如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,则下列比值中不等于cosA的是()A. B. C. D.3.如图,在正方形中,为边上的点,连结,将绕点逆时针方向旋转得到,连结,若,则的度数为()A. B. C. D.4.如图,正方形网格中,每个小正方形的边长均为1个单位长度.,在格点上,现将线段向下平移个单位长度,再向左平移个单位长度,得到线段,连接,.若四边形是正方形,则的值是()A.3 B.4 C.5 D.65.如图,点A、B、C均在⊙O上,若∠AOC=80°,则∠ABC的大小是()A.30° B.35° C.40° D.50°6.在反比例函数的图象中,阴影部分的面积不等于4的是()A. B. C. D.7.半径为10的⊙O和直线l上一点A,且OA=10,则直线l与⊙O的位置关系是()A.相切 B.相交 C.相离 D.相切或相交8.如图,△ABC中,∠C=90°,AB=5,AC=4,且点D,E分别是AC,AB的中点,若作半径为3的⊙C,则下列选项中的点在⊙C外的是()A.点B B.点D C.点E D.点A9.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A. B. C. D.10.关于反比例函数,下列说法不正确的是()A.函数图象分别位于第一、第三象限B.当x>0时,y随x的增大而减小C.若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y2D.函数图象经过点(1,2)11.在△ABC中,∠C=Rt∠,AC=6,BC=8,则cosB的值是()A. B. C. D.12.如图,若为正整数,则表示的值的点落在()A.段① B.段② C.段③ D.段④二、填空题(每题4分,共24分)13.如图,在4×4的正方形网络中,已将部分小正方形涂上阴影,有一个小虫落到网格中,那么小虫落到阴影部分的概率是____.14.已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是.15.如图,反比例函数的图象位于第一、三象限,且图象上的点与坐标轴围成的矩形面积为2,请你在第三象限的图象上取一个符合题意的点,并写出它的坐标______________.16.如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”.则半径为2的“等边扇形”的面积为.17.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是________.18.小明家的客厅有一张直径为1.2米,高0.8米的圆桌BC,在距地面2米的A处有一盏灯,圆桌的影子为DE,依据题意建立平面直角坐标系,其中D点坐标为(2,0),则点E的坐标是_____.三、解答题(共78分)19.(8分)2019年鞍山市出现了猪肉价格大幅上涨的情况,经过对我市某猪肉经销商的调查发现,当猪肉售价为60元/千克时,每天可以销售80千克,日销售利润为1600元(不考虑其他因素对利润的影响):售价每上涨1元,则每天少售出2千克;若设猪肉售价为x元/千克,日销售量为y千克.(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)若物价管理部门规定猪肉价格不高于68元/千克,当售价是多少元/千克时,日销售利润最大,最大利润是多少元.20.(8分)如图,一位篮球运动员在离篮圈水平距离4处跳起投篮,球运行的高度()与运行的水平距离()满足解析式,当球运行的水平距离为1.5时,球离地面高度为2.2,球在空中达到最大高度后,准确落入篮圈内.已知篮圈中心离地面距离为2.35.(1)当球运行的水平距离为多少时,达到最大高度?最大高度为多少?(2)若该运动员身高1.8,这次跳投时,球在他头顶上方3.25处出手,问球出手时,他跳离地面多高?21.(8分)如图,在平面直角坐标系中,反比例函数的图象过等边三角形的顶点,,点在反比例函数图象上,连接.(1)求反比例函数的表达式;(2)若四边形的面积是,求点的坐标.22.(10分)已知二次函数y=x2-2mx+m2+m-1(m为常数).(1)求证:不论m为何值,该二次函数的图像与x轴总有两个公共点;(2)将该二次函数的图像向下平移k(k>0)个单位长度,使得平移后的图像经过点(0,-2),则k的取值范围是.23.(10分)(1)已知,求的值;(2)已知直线分别截直线于点,截直线于点,且,,求的长.24.(10分)(1)计算:.(2)用适当方法解方程:(3)用配方法解方程:25.(12分)(1)计算:(2),求的度数26.为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.
参考答案一、选择题(每题4分,共48分)1、C【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与构成等腰三角形的情况,再利用概率公式即可求得答案.【详解】画树状图得:
∵共有27种等可能的结果,构成等腰三角形的有15种情况,
∴以a、b、c为边长正好构成等腰三角形的概率是:.
故选:C.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.2、A【解析】根据垂直定义证出∠A=∠DCB,然后根据余弦定义可得答案.【详解】解:∵CD是斜边AB上的高,∴∠BDC=90°,∴∠B+∠DCB=90°,∵∠ACB=90°,∴∠A+∠B=90°,∴∠A=∠DCB,∴cosA=故选A.【点睛】考查了锐角函数定义,关键是掌握余弦=邻边:斜边.3、D【分析】根据旋转的性质可知,然后得出,最后利用即可求解.【详解】∵绕点逆时针方向旋转得到,∴,,∴.故选:D.【点睛】本题主要考查旋转的性质及等腰直角三角形的性质,掌握旋转的性质及等腰直角三角形的性质是解题的关键.4、A【分析】根据线段的平移规律可以看出,线段AB向下平移了1个单位,向左平移了2个单位,相加即可得出.【详解】解:根据线段的平移规律可以看出,线段AB向下平移了1个单位,向左平移了2个单位,得到A'B',则m+n=1.故选:A【点睛】本题考查的是线段的平移问题,观察图形时要考虑其中一点就行.5、C【分析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC=80°,∴.故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6、B【分析】根据反比例函数中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(|k|)=1.故选B.【点睛】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.7、D【分析】根据直线和圆的位置关系来判断.【详解】设圆心到直线l的距离为d,则d≤10,当d=10时,d=r,直线与圆相切;当r<10时,d<r,直线与圆相交,所以直线与圆相切或相交.故选D点睛:本题考查了直线与圆的位置关系,①直线和圆相离时,d>r;②直线和圆相交时,d<r;③直线和圆相切时,d=r(d为圆心到直线的距离),反之也成立.8、D【分析】分别求出AC、CE、BC、CD的长,根据点与圆的位置关系的判断方法进行判断即可.【详解】如图,连接CE,∵∠C=90°,AB=5,AC=4,∴BC==3,∵点D,E分别是AC,AB的中点,∴CD=AC=2,CE=AB=,∵⊙C的半径为3,BC=3,,,∴点B在⊙C上,点E在⊙C内,点D在⊙C内,点A在⊙C外,故选:D.【点睛】本题考查点与圆的位置关系,解题的关键是求点到圆心的距离.9、D【解析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.10、C【分析】根据反比例函数图象上点的坐标特征对D进行判断;根据反比例函数的性质对A、B、C进行判断.【详解】A.k=2>0,则双曲线的两支分别位于第一、第三象限,所以A选项的说法正确;B.当x>0时,y随着x的增大而减小,所以B选项的说法正确;C.若x1<0,x2>0,则y2>y1,所以C选项的说法错误;D.把x=1代入得y=2,则点(1,2)在的图象上,所以D选项的说法正确.故选C.【点睛】本题考查了反比例函数的性质:反比例函数(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.11、C【分析】利用勾股定理求出AB,根据余弦函数的定义求解即可.【详解】解:如图,在中,,,,,故选:C.【点睛】本题考查解直角三角形,解题的关键是熟练掌握基本知识,属于中考常考题型.12、B【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【详解】解∵1.又∵x为正整数,∴1,故表示的值的点落在②.故选B.【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.二、填空题(每题4分,共24分)13、【解析】本题应分别求出正方形的总面积和阴影部分的面积,用阴影部分的面积除以总面积即可得出概率.【详解】解:小虫落到阴影部分的概率=,故答案为:.【点睛】本题考查的是概率的公式,用到的知识点为:概率=相应的面积与总面积之比.14、15.6【解析】试题分析:此题考查了折线统计图和中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,最中间的两个数的平均数是(15.3+15.9)÷2=15.6(℃),则这六个整点时气温的中位数是15.6℃.考点:折线统计图;中位数15、满足的第三象限点均可,如(-1,-2)【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.【详解】解:∵图象上的点与坐标轴围成的矩形面积为2,
∴|k|=2,
∴反比例函数y=的图象在一、三象限,k>0,
∴k=2,
∴此反比例函数的解析式为.∴第三象限点均可,可取:当x=-1时,y=-2综上所述,答案为:满足的第三象限点均可,如(-1,-2)【点睛】本题考查的是反比例函数系数k的几何意义,即过反比例函数图象上任意一点向两坐标轴引垂线,所得矩形的面积为|k|.16、1【解析】试题分析:根据题意可得圆心角的度数为:,则S==1.考点:扇形的面积计算.17、①③⑤【解析】①根据拋物线的开口方向以及对称轴为x=1,即可得出a、b之间的关系以及ab的正负,由此得出①正确,根据抛物线与y轴的交点在y轴正半轴上,可知c为正结合a<0、b>0即可得出②错误,将抛物线往下平移3个单位长度可知抛物线与x轴只有一个交点从而得知③正确,根据拋物线的对称性结合抛物线的对称轴为x=1以及点B的坐标,即可得出抛物线与x轴的另一交点坐标,④正确,⑤根据两函数图象的上下位置关系即可解题.【详解】∵抛物线的顶点坐标A(1,3),∴对称轴为x=-=1,∴2a+b=0,①正确,∵a,b,抛物线与y轴交于正半轴,∴c∴abc0,②错误,∵把抛物线向下平移3个单位长度得到y=ax2+bx+c-3,此时抛物线的顶点也向下平移3个单位长度,∴顶点坐标为(1,0),抛物线与x轴只有一个交点,即方程ax2+bx+c=3有两个相等的实数根,③正确.∵对称轴为x=-=1,与x轴的一个交点为(4,0),根据对称性质可知与x轴的另一个交点为(-2,0),④错误,由抛物线和直线的图像可知,当1<x<4时,有y2<y1.,⑤正确.【点睛】本题考查了二次函数的图像和性质,熟悉二次函数的性质是解题关键.18、(4,0)【解析】根据相似三角形的判定和性质即可得到结论.【详解】解:∵BC∥DE,∴△ABC∽△ADE,∴,∵BC=1.2,∴DE=2,∴E(4,0).故答案为:(4,0).【点睛】本题考查了中心投影,相似三角形的判定和性质,正确的识别图形是解题的关键.三、解答题(共78分)19、(1)y=200﹣2x;(2)售价是68元/千克时,日销售利润最大,最大利润是1元【分析】(1)根据售价每上涨1元,则每天少售出2千克即可列出函数关系式;(2)根据(1)所得关系式,销售利润=每千克的利润×销售量列出二次函数关系式,再求出最值即可.【详解】解:(1)根据题意,得设猪肉进价为a元/千克,(60﹣a)×80=1600,解得a=40,y=80﹣2(x﹣60)=200﹣2x.答:y与x的函数解析式为:y=200﹣2x.(2)设售价为x元时,日销售利润为w元,根据题意,得w=(x﹣40)(200﹣2x)=﹣2x2+280x﹣8000;=﹣2(x﹣70)2+1800∵﹣2<0,当x<70时,w随x的增大而增大,∵物价管理部门规定猪肉价格不高于68元/千克,∴x=68时,w有最大值,最大值为1.答:当售价是68元/千克时,日销售利润最大,最大利润是1元.【点睛】本题考查了二次函数的应用,解决本题的关键是掌握销售问题的数量关系.20、(1)当球运行的水平距离为时,达到最大高度为;(2)球出手时,他跳离地面3.2.【分析】(1)根据待定系数法,即可求解;(2)令时,则,进而即可求出答案.【详解】(1)依题意得:抛物线经过点和,∴,解得:,∴,∴当球运行的水平距离为时,达到最大高度为;(2)∵时,,∴,即球出手时,他跳离地面3.2.【点睛】本题主要考查二次函数的实际应用,掌握二次函数的图象和性质,是解题的关键.21、(1)(2)【解析】(1)先求出B的坐标,根据系数k的几何意义即可求得k=,从而求得反比例函数的表达式;(2)根据题意可,求出,再设,求出t,即可解答【详解】(1),反比例函数的表达式为(2)设【点睛】此题考查了反比例函数解析式,不规则图形面积.,解题关键在于求出B的坐标22、(1)证明见解析;(2)k≥.【分析】(1)根据判别式的值得到△=(2m-1)2+3>0,然后根据判别式的意义得到结论;
(2)把(0,-2)带入平移后的解析式,利用配方法得到k=(m+)²+,即可得出结果.【详解】(1)证:当y=0时x2-2mx+m2+m-1=0∵b2-4ac=(-2m)2-4(m2+m-1)=8m2-4m2-4m+4=4m2-4m+4=(2m-1)2+3>0∴方程x2-2mx+m2+m-1=0有两个不相等的实数根∴二次函数y=x2-2mx+m2+m-1图像与x轴有两个公共点(2)解:平移后的解析式为:y=x2-2mx+m2+m-1-k,过(0,-2),∴-2=0-0+m²+m-1-k,∴k=m²+m+1=(m+)²+,∴k≥.【点睛】本题考查了二次函数图象与几何变换以及图象与x轴交点个数确定方法,能把一个二次三项式进行配方是解题的关键.23、(1)9;(2)6.【分析】(1)交叉相乘,化简后同除以y即可得出答案;(2)根据平行线的性质计算即可得出答案.【详解】解:(1)∴;(2)∵∴即:∴【点睛】本题考查的是解分式方程以及平行线的性质,比较简单,需要熟练掌握相关基础知识.24、(1)3;(2)x1=,x2=;(3)x1=1+,x2=1−.【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024合法的咨询服务合同
- 2024年度医疗设施EPC建设合同
- 2024电子版个人服务合同书
- 2024年度5G基站建设设计与施工服务合同
- 2024年度供应链管理合同:供应商与采购商之间的货物供应与付款协议
- 谁会跑课件教学课件
- 2024年度租赁期满后购买合同标的购买价格
- 2024年师范大学新进教师就业协议
- 2024年度文化旅游项目合作合同
- 2024年度医疗设备研发与生产许可合同
- 软岩隧道设计
- PEP小学六年级英语上册选词填空专题训练
- 部编版道德与法治四年级上册第一单元作业设计
- SB/T 10379-2012速冻调制食品
- GB/T 9754-2007色漆和清漆不含金属颜料的色漆漆膜的20°、60°和85°镜面光泽的测定
- 甲状腺癌NCCN指南中文版2021.v2
- GB/T 28726-2012气体分析氦离子化气相色谱法
- GB/T 14100-2016燃气轮机验收试验
- 晨鸣纸业财务报表分析
- 2023年山东省春季高考财经类专业知识试题
- 四年级安全教育教案洪水来了巧逃生
评论
0/150
提交评论