浙江省吴兴区七校联考2022-2023学年九年级数学第一学期期末教学质量检测试题含解析_第1页
浙江省吴兴区七校联考2022-2023学年九年级数学第一学期期末教学质量检测试题含解析_第2页
浙江省吴兴区七校联考2022-2023学年九年级数学第一学期期末教学质量检测试题含解析_第3页
浙江省吴兴区七校联考2022-2023学年九年级数学第一学期期末教学质量检测试题含解析_第4页
浙江省吴兴区七校联考2022-2023学年九年级数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,在中,,,将绕点按顺时针旋转后得到.此时点在边上,则旋转角的大小为()A. B. C. D.2.观察下列图形,既是轴对称图形又是中心对称图形的有A.1个 B.2个 C.3个 D.4个3.方程的根是()A. B. C., D.,4.不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是().A.3个都是黑球 B.2个黑球1个白球C.2个白球1个黑球 D.至少有1个黑球5.如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有()A.1个 B.2个 C.3个 D.4个6.如图所示的几何体,它的左视图是()A. B. C. D.7.一元二次方程的解为()A. B., C., D.,8.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A.(54+10)cm B.(54+10)cm C.64cm D.54cm9.在平面直角坐标系中,点P(m,1)与点Q(﹣2,n)关于原点对称,则mn的值是()A.﹣2 B.﹣1 C.0 D.210.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A. B. C. D.二、填空题(每小题3分,共24分)11.双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是12.若为一元二次方程的一个根,则__________.13.将二次函数y=x2﹣6x+8化成y=a(x+m)2+k的形式是_____.14.在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有_________个15.若一个反比例函数的图像经过点和,则这个反比例函数的表达式为__________.16.使函数有意义的自变量的取值范围是___________.17.计算:cos45°=________________18.若点,在反比例函数的图象上,则______.(填“>”“<”或“=”)三、解答题(共66分)19.(10分)今年,我市某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动.现需要购进100个某品牌的足球供学生使用.经调查,该品牌足球2015年单价为200元,2017年单价为162元.(1)求2015年到2017年该品牌足球单价平均每年降低的百分率;(2)选购期间发现该品牌足球在两个文体用品商店有不同的促销方案:试问去哪个商场购买足球更优惠?20.(6分)某商场销售一批名牌衬衫,平均每天可售出10件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出1件,若商场平均每天要盈利600元,每件衬衫应降价多少元?21.(6分)解方程:(1)x2-4x+1=0

(2)x2+3x-4=022.(8分)如图,方格纸中的每个小正方形的边长都为1,在建立平面直角坐标系后,△ABC的顶点均在格点上.(1)以点A为旋转中心,将△ABC绕点A逆时针旋转90°得到△AB1C1,画出△AB1C1.(2)画出△ABC关于原点O成中心对称的△A2B2C2,若点C的坐标为(﹣4,﹣1),则点C2的坐标为.23.(8分)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求E点的坐标;②在线段AB运动过程中,连接BC,若△BCD是等腰三形,求所有满足条件的m的值.24.(8分)如图,在⊙O中,点C是的中点,弦AB与半径OC相交于点D,AB=11,CD=1.求⊙O半径的长.25.(10分)已知二次函数的图象顶点是,且经过,求这个二次函数的表达式.26.(10分)如图,等边的边长为8,的半径为,点从点开始,在的边上沿方向运动.(1)从点出发至回到点,与的边相切了次;(2)当与边相切时,求的长度.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据旋转的性质和三角形的内角和进行角的运算即可得出结果.【详解】解:∵在中,,,∴∠B=59°,∵将绕点按顺时针旋转后得到,∴∠BCD是旋转角,,∴BC=DC,∴∠CDB=∠B=59°,∴∠BCD=180°−∠CDB−∠B=62°,故选A.【点睛】本题考查了旋转的性质和三角形的内角和,解题的关键是找到旋转角并熟练运用旋转的性质求解.2、C【解析】试题分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,∵第一个图形不是轴对称图形,是中心对称图形;第二个图形既是轴对称图形又是中心对称图形;第三个图形既是轴对称图形又是中心对称图形;第四个图形既是轴对称图形又是中心对称图形;∴既是轴对称图形又是中心对称图形共有3个.故选C.3、D【分析】先移项然后通过因式分解法解一元二次方程即可.【详解】或故选:D.【点睛】本题主要考查因式分解法解一元二次方程,掌握因式分解法是解题的关键.4、D【分析】根据白球两个,摸出三个球必然有一个黑球.【详解】解:A袋子中装有4个黑球和2个白球,摸出的三个球中可能为两个白球一个黑球,所以A不是必然事件;B.C.袋子中有4个黑球,有可能摸到的全部是黑球,B、C有可能不发生,所以B、C不是必然事件;D.白球只有两个,如果摸到三个球不可能都是白梂,因此至少有一个是黑球,D正确.故选D.【点睛】本题考查随机事件,解题关键在于根据题意对选项进行判断即可.5、C【解析】∵△BMN是由△BMC翻折得到的,∴BN=BC,又点F为BC的中点,在Rt△BNF中,sin∠BNF=,∴∠BNF=30°,∠FBN=60°,∴∠ABN=90°-∠FBN=30°,故②正确;在Rt△BCM中,∠CBM=∠FBN=30°,∴tan∠CBM=tan30°=,∴BC=CM,AB2=3CM2故③正确;∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,∴△PMN是等边三角形,故④正确;由题给条件,证不出CM=DM,故①错误.故正确的有②③④,共3个.故选C.6、D【解析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.7、C【分析】通过因式分解法解一元二次方程即可得出答案.【详解】∴或∴,故选C【点睛】本题主要考查解一元二次方程,掌握因式分解法是解题的关键.8、C【分析】过A作AE⊥CP于E,过B作BF⊥DQ于F,则可得AE和BF的长,依据端点A与B之间的距离为10cm,即可得到可以通过闸机的物体的最大宽度.【详解】如图所示,过A作AE⊥CP于E,过B作BF⊥DQ于F,则Rt△ACE中,AE=AC=×54=27(cm),同理可得,BF=27cm,又∵点A与B之间的距离为10cm,∴通过闸机的物体的最大宽度为27+10+27=64(cm),故选C.【点睛】本题主要考查了特殊角的三角函数值,特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.9、A【分析】已知在平面直角坐标系中,点P(m,1)与点Q(﹣2,n)关于原点对称,则P和Q两点横坐标互为相反数,纵坐标互为相反数即可求得m,n,进而求得mn的值.【详解】∵点P(m,1)与点Q(﹣2,n)关于原点对称∴m=2,n=-1∴mn=-2故选:A【点睛】本题考查了直角坐标系中,关于原点对称的两个点的坐标特点,它们的横坐标互为相反数,纵坐标互为相反数.10、D【解析】等量关系为:鸡的只数+兔的只数=35,2×鸡的只数+4×兔的只数=94,把相关数值代入即可得到所求的方程组.【详解】解:∵鸡有2只脚,兔有4只脚,∴可列方程组为:,故选D.【点睛】本题考查了由实际问题抽象出二元一次方程组.如何列出二元一次方程组的关键点在于从题干中找出等量关系.二、填空题(每小题3分,共24分)11、y2=.【分析】根据,过y1上的任意一点A,得出△CAO的面积为2,进而得出△CBO面积为3,即可得出y2的解析式.【详解】解:∵,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,S△AOB=1,∴△CBO面积为3,∴xy=6,∴y2的解析式是:y2=.故答案为:y2=.12、-2【分析】把x=1代入已知方程可得关于m的方程,解方程即可求得答案.【详解】解:∵为一元二次方程的一个根,∴,解得:m=-2.故答案为:-2.【点睛】本题考查了一元二次方程的解的定义,属于应知应会题型,熟练掌握一元二次方程的解的概念是解题关键.13、y=(x﹣3)2﹣1【分析】直接利用配方法将原式变形进而得出答案.【详解】y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1.故答案为:y=(x﹣3)2﹣1.【点睛】本题考查了二次函数的三种形式,正确配方是解答本题的关键.14、14【分析】先由频率估计出摸到黄球的概率,然后利用概率公式求解即可.【详解】因摸到黄球的频率稳定在0.35左右则摸到黄球的概率为0.35设布袋中黄球的个数为x个由概率公式得解得故答案为:14.【点睛】本题考查了频率估计概率、概率公式,根据频率估计出事件概率是解题关键.15、【分析】这个反比例函数的表达式为,将A、B两点坐标代入,列出方程即可求出k的值,从而求出反比例函数的表达式.【详解】解:设这个反比例函数的表达式为将点和代入,得化简,得解得:(反比例函数与坐标轴无交点,故舍去)解得:∴这个反比例函数的表达式为故答案为:.【点睛】此题考查的是求反比例函数的表达式,掌握待定系数法是解决此题的关键.16、且【分析】根据二次根式的性质和分式的性质即可得.【详解】由二次根式的性质和分式的性质得解得故答案为:且.【点睛】本题考查了二次根式的性质、分式的性质,二次根式的被开方数为非负数、分式的分母不能为零是常考知识点,需重点掌握.17、1【分析】将cos45°=代入进行计算即可.【详解】解:cos45°=故答案为:1.【点睛】此题考查的是特殊角的锐角三角函数值,掌握cos45°=是解决此题的关键.18、<【分析】根据反比例的性质,比较大小【详解】∵∴在每一象限内y随x的增大而增大点,在第二象限内y随x的增大而增大∴m<n故本题答案为:<【点睛】本题考查了通过反比例图像的增减性判断大小三、解答题(共66分)19、(1)10%.(2)去B商场购买足球更优惠.【解析】试题分析:(1)设2015年到2017年该品牌足球单价平均每年降低的百分率为x,根据2015年及2017年该品牌足球的单价,即可得出关于x的一元二次方程,解之即可得出结论;(2)根据两商城的促销方案,分别求出在两商城购买100个该品牌足球的总费用,比较后即可得出结论.试题解析:(1)设2015年到2017年该品牌足球单价平均每年降低的百分率为x,根据题意得:200×(1﹣x)2=162,解得:x=0.1=10%或x=﹣1.9(舍去).答:2015年到2017年该品牌足球单价平均每年降低的百分率为10%.(2)100×≈90.91(个),在A商城需要的费用为162×91=14742(元),在B商城需要的费用为162×100×=1(元).14742>1.答:去B商场购买足球更优惠.考点:一元二次方程的应用.20、平均每天要盈利600元,每件衬衫应降价20元【解析】试题分析:本题考查一元二次方程解决商品销售问题,设每件衬衫应降价x,则每件的盈利为(40-x),每天可以售出的数量为(10+x),由题意得:(40-x)(10+x)=600,解得=10,=20,由于为了扩大销售量,增加盈利,尽快减少库存,所以=20.试题解析:(1)设每件衬衫应降价x元,则每件盈利40-x元,每天可以售出10+x,由题意,得(40-x)(10+x)=600,即:(x-10)(x-20)=0,解,得x1=10,x2=20,为了扩大销售量,增加盈利,尽快减少库存,所以x的值应为20,所以,若商场平均每天要盈利600元,每件衬衫应降价20元.21、(1)x1=+2,x2=-+2(2)x1=-4,x2=1【分析】(1)运用配方法解一元二次方程;(2)运用因式分解法解一元二次方程.【详解】(1)解得:,.(2)解得:,.【点睛】选择合适的方法解一元二次方程是解题的关键.22、(1)见解析,(2)图见解析;(4,1)【解析】(1)让三角形的各顶点都绕点A顺时针旋转90°后得到对应点,顺次连接即可;(2)根据△ABC的各顶点关于原点的中心对称,得出A2、B2、C2的坐标,连接各点,即可得到结论.【详解】解:(1)所画图形如下所示,△A1B1C1即为所求;(2)所画图形如下所示,△AB2C2即为所求.点C2的坐标为(4,1),故答案为:(4,1).【点睛】本题主要考查了旋转变换图形的方法,图形的中心对称问题和平移的性质,考查了利用直角坐标系解决问题的能力,关于原点对称的两个点的横坐标和纵坐标都互为相反数.23、(1)a=4,k=8;(2)①E(5,);②满足条件的m的值为4或5或2.【分析】(1)把点A坐标代入直线AB的解析式中,求出a,求出点B坐标,再将点B坐标代入反比例函数解析式中求出k;(2)①确定出点D(5,4),得到求出点E坐标;②先表示出点C,D坐标,再分三种情况:当BC=CD时,判断出点B在AC的垂直平分线上,即可得出结论,当BC=BD时,表示出BC,用BC=BD建立方程求解即可得出结论,当BD=AB时,m=AB,根据勾股定理计算即可.【详解】解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)代入反比例函数解析式y=(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y=,当m=3时,将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即D(5,4),∵DF⊥x轴于点F,交反比例函数y=的图象于点E,∴E(5,);②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D((m+2,4),△BCD是等腰三形,当BC=CD时,BC=AB,∴点B在线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论