浙江省宁波市南三县2022-2023学年数学九上期末考试模拟试题含解析_第1页
浙江省宁波市南三县2022-2023学年数学九上期末考试模拟试题含解析_第2页
浙江省宁波市南三县2022-2023学年数学九上期末考试模拟试题含解析_第3页
浙江省宁波市南三县2022-2023学年数学九上期末考试模拟试题含解析_第4页
浙江省宁波市南三县2022-2023学年数学九上期末考试模拟试题含解析_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.对于反比例函数,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上 B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大 D.当x<0时,y随x的增大而减小2.如图,正方形中,为的中点,的垂直平分线分别交,及的延长线于点,,,连接,,,连接并延长交于点,则下列结论中:①;②;③;④;⑤;⑥;⑦.正确的结论的个数为()A.3 B.4 C.5 D.63.如图,已知Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA的值为().A. B.C. D.4.用一个4倍放大镜照△ABC,下列说法错误的是()A.△ABC放大后,∠B是原来的4倍B.△ABC放大后,边AB是原来的4倍C.△ABC放大后,周长是原来的4倍D.△ABC放大后,面积是原来的16倍5.如图,在平面直角坐标系中,正方形的顶点在坐标原点,点的坐标为,点在第二象限,且反比例函数的图像经过点,则的值是()A.-9 B.-8 C.-7 D.-66.设计一个摸球游戏,先在一个不透明的盒子中放入个白球,如果希望从中任意摸出个球是白球的概率为,那么应该向盒子中再放入多少个其他颜色的球.(游戏用球除颜色外均相同)()A. B. C. D.7.一元二次方程的解是()A.5或0 B.或0 C. D.08.三角形两边长分别是和,第三边长是一元二次方程的一个实数根,则该三角形的面积是()A. B. C.或 D.或9.如图,在⊙O中,AB为直径,点M为AB延长线上的一点,MC与⊙O相切于点C,圆周上有另一点D与点C分居直径AB两侧,且使得MC=MD=AC,连接AD.现有下列结论:①MD与⊙O相切;②四边形ACMD是菱形;③AB=MO;④∠ADM=120°,其中正确的结论有()A.4个 B.3个 C.2个 D.1个10.如图,抛物线与轴交于点,与轴的负半轴交于点,点是对称轴上的一个动点.连接,当最大时,点的坐标是()A. B. C. D.11.如果△ABC∽△DEF,且对应边的AB与DE的长分别为2、3,则△ABC与△DEF的面积之比为()A.4:9 B.2:3 C.3:2 D.9:412.平面直角坐标系中,抛物线经变换后得到抛物线,则这个变换可以是()A.向左平移2个单位 B.向右平移2个单位C.向左平移4个单位 D.向右平移4个单位二、填空题(每题4分,共24分)13.将方程化为一元二次方程的一般形式,其中二次项系数为1,则一次项系数、常数项分别为____.14.一元二次方程(x﹣5)(x﹣7)=0的解为_____.15.如图,点D,E分别在AB、AC上,且∠ABC=∠AED.若DE=2,AE=3,BC=6,则AB的长为_____.16.如图,在⊙O中,半径OC与弦AN垂直于点D,且AB=16,OC=10,则CD的长是_____.17.如图,在平行四边形中,是线段上的点,如果,,连接与对角线交于点,则_______.18.已知关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根,则这两个相等实数根的和为_____.三、解答题(共78分)19.(8分)在正方形中,点是边上一点,连接.图1图2(1)如图1,点为的中点,连接.已知,,求的长;(2)如图2,过点作的垂线交于点,交的延长线于点,点为对角线的中点,连接并延长交于点,求证:.20.(8分)某企业设计了一款工艺品,每件成本40元,出于营销考虑,要求每件售价不得低于40元,但物价部门要求每件售价不得高于60元.据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每涨1元,每天就少售出2件,设单价上涨元.(1)求当为多少时每天的利润是1350元?(2)设每天的销售利润为,求销售单价为多少元时,每天利润最大?最大利润是多少?21.(8分)如图,在平面直角坐标系xOy中,抛物线()与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.22.(10分)如图,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F两点在BC上,且四边形AEFD是平行四边形.(1)AD与BC有何等量关系?请说明理由;(2)当AB=DC时,求证:四边形AEFD是矩形.23.(10分)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处回合,如图所示,以水平方向为轴,喷水池中心为原点建立平面直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?24.(10分)已知关于的方程(1)求证:无论为何值,方程总有实数根.(2)设,是方程的两个根,记,S的值能为2吗?若能,求出此时的值;若不能,请说明理由.25.(12分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,抛物线与x轴的另一交点为B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.26.如图,某科技物展览大厅有A、B两个入口,C、D、E三个出口.小昀任选一个入口进入展览大厅,参观结束后任选一个出口离开.(1)若小昀已进入展览大厅,求他选择从出口C离开的概率.(2)求小昀选择从入口A进入,从出口E离开的概率.(请用列表或画树状图求解)

参考答案一、选择题(每题4分,共48分)1、C【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化2、B【分析】①作辅助线,构建三角形全等,证明△ADE≌△GKF,则FG=AE,可得FG=2AO;②设正方形ABCD的边长为2x,则AD=AB=2x,DE=EC=x,证明△ADE∽△HOA,得,于是可求BH及HE的值,可作出判断;③分别表示出OD、OC,根据勾股定理逆定理可以判断;④证明∠HEA=∠AED=∠ODE,OE≠DE,则∠DOE≠∠HEA,OD与HE不平行;

⑤由②可得,根据AR∥CD,得,则;⑥证明△HAE∽△ODE,可得,等量代换可得OE2=AH•DE;⑦分别计算HC、OG、BH的长,可得结论.【详解】解:①如图,过G作GK⊥AD于K,

∴∠GKF=90°,

∵四边形ABCD是正方形,

∴∠ADE=90°,AD=AB=GK,

∴∠ADE=∠GKF,

∵AE⊥FH,

∴∠AOF=∠OAF+∠AFO=90°,

∵∠OAF+∠AED=90°,

∴∠AFO=∠AED,

∴△ADE≌△GKF,

∴FG=AE,

∵FH是AE的中垂线,

∴AE=2AO,

∴FG=2AO,

故①正确;②设正方形ABCD的边长为2x,则AD=AB=2x,DE=EC=x,,易得△ADE∽△HOA,,,Rt△AHO中,由勾股定理得:AH=,∴BH=AH-AB=,∵HE=AH=,∴HE=5BH;

故②正确;③,,∴,∴OC与OD不垂直,故③错误;

④∵FH是AE的中垂线,

∴AH=EH,

∴∠HAE=∠HEA,

∵AB∥CD,

∴∠HAE=∠AED,

Rt△ADE中,∵O是AE的中点,

∴OD=AE=OE,

∴∠ODE=∠AED,

∴∠HEA=∠AED=∠ODE,

当∠DOE=∠HEA时,OD∥HE,

但AE>AD,即AE>CD,

∴OE>DE,即∠DOE≠∠HEA,

∴OD与HE不平行,

故④不正确;

⑤由②知BH=,,延长CM、BA交于R,

∵RA∥CE,

∴∠ARO=∠ECO,

∵AO=EO,∠ROA=∠COE,

∴△ARO≌△ECO,

∴AR=CE,

∵AR∥CD,,故⑤正确;

⑥由①知:∠HAE=∠AEH=∠OED=∠ODE,

∴△HAE∽△ODE,∵AE=2OE,OD=OE,

∴OE•2OE=AH•DE,

∴2OE2=AH•DE,

故⑥正确;

⑦由②知:HC=,∵AE=2AO=OH=,tan∠EAD=,,,∵FG=AE,,∴OG+BH=,∴OG+BH≠HC,

故⑦不正确;

综上所述,本题正确的有;①②⑤⑥,共4个,

故选:B.【点睛】本题是相似三角形的判定与性质以及勾股定理、线段垂直平分线的性质、正方形的性质的综合应用,正确作辅助线是关键,解答时证明三角形相似是难点.3、C【分析】根据勾股定理求出AB,并根据正弦公式:sinA=求解即可.【详解】∵∠C=90°,BC=3,AC=4∴∴故选C.【点睛】本题主要是正弦函数与勾股定理的简单应用,正确理解正弦求值公式即可.4、A【解析】试题分析:用一个4倍放大镜照△ABC,放大后与原三角形相似且相似比为1:4,相似三角形对应角相等,对应边的比等于相似比、对应周长的比等于相似比,面积比等于相似比的平方,故A选项错误.故选A.考点:相似三角形的性质.5、B【分析】作AD⊥x轴于D,CE⊥x轴于E,先通过证得△AOD≌△OCE得出AD=OE,OD=CE,设A(x,),则C(,-x),根据正方形的性质求得对角线解得F的坐标,即可得出,解方程组求得k的值.【详解】解:如图,作轴于,轴于连接AC,BO,∵,∴∵,∴.在和中,∴∴.设,则.∵和互相垂直平分,点的坐标为,∴交点的坐标为,∴,解得,∴,故选.【点睛】本题考查了反比例函数图象上点的坐标特征,待定系数法求解析式,正方形的性质,全等三角形的判定和性质,熟练掌握正方形的性质是解题的关键.6、A【分析】利用概率公式,根据白球个数和摸出个球是白球的概率可求得盒子中应有的球的个数,再减去白球的个数即可求得结果.【详解】解:∵盒子中放入了2个白球,从盒子中任意摸出个球是白球的概率为,∴盒子中球的总数=,∴其他颜色的球的个数为6−2=4,故选:A.【点睛】本题考查了概率公式的应用,灵活运用概率=所求情况数与总情况数之比是解题的关键.7、B【解析】根据因式分解法即可求出答案.【详解】∵5x2=x,∴x(5x﹣1)=0,∴x=0或x.故选:B.【点睛】本题考查了一元二次方程,解答本题的关键是熟练运用一元二次方程的解法,本题属于基础题型.8、D【分析】先利用因式分解法解方程得到所以,,再分类讨论:当第三边长为6时,如图,在中,,,作,则,利用勾股定理计算出,接着计算三角形面积公式;当第三边长为10时,利用勾股定理的逆定理可判断此三角形为直角三角形,然后根据三角形面积公式计算三角形面积.【详解】解:,或,所以,,I.当第三边长为6时,如图,在中,,,作,则,,所以该三角形的面积;II.当第三边长为10时,由于,此三角形为直角三角形,所以该三角形的面积,综上所述:该三角形的面积为24或.故选:D.【点睛】本题考查的是利用因式分解法解一元二次方程,等腰三角形的性质,勾股定理及其逆定理,解答此题时要注意分类讨论,不要漏解.9、A【详解】如图,连接CO,DO,∵MC与⊙O相切于点C,∴∠MCO=90°,在△MCO与△MDO中,,∴△MCO≌△MDO(SSS),∴∠MCO=∠MDO=90°,∠CMO=∠DMO,∴MD与⊙O相切,故①正确;在△ACM与△ADM中,,∴△ACM≌△ADM(SAS),∴AC=AD,∴MC=MD=AC=AD,∴四边形ACMD是菱形,故②正确;如图连接BC,∵AC=MC,∴∠CAB=∠CMO,又∵AB为⊙O的直径,∴∠ACB=90°,在△ACB与△MCO中,,∴△ACB≌△MCO(SAS),∴AB=MO,故③正确;∵△ACB≌△MCO,∴BC=OC,∴BC=OC=OB,∴∠COB=60°,∵∠MCO=90°,∴∠CMO=30°,又∵四边形ACMD是菱形,∴∠CMD=60°,∴∠ADM=120°,故④正确;故正确的有4个.故选A.10、D【分析】先根据题意求出点A、点B的坐标,A(0,-3),B(-1,0),抛物线的对称轴为x=1,根据三角形三边的关系得≤AB,当ABM三点共线时取等号,即M点是x=-1与直线AB的交点时,最大.求出点M的坐标即可.【详解】解:根据三角形三边的关系得:≤AB,当ABM三点共线时取等号,当三点共线时,最大,则直线与对称轴的交点即为点.由可知,,对称轴设直线为.故直线解析式为当时,.故选:.【点睛】本题考查了三角形三边关系的应用,及二次函数的性质应用.找到三点共线时最大是关键,11、A【分析】根据相似三角形的面积的比等于相似比的平方进行计算.【详解】∵△ABC∽△DEF,∴△ABC与△DEF的面积之比等于()2=()2=.故选:A.【点睛】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比等于相似比;相似三角形的面积的比等于相似比的平方.12、B【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】解:,顶点坐标是(-1,-4).

,顶点坐标是(1,-4).

所以将抛物线向右平移2个单位长度得到抛物线,

故选:B.【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律和变化特点.二、填空题(每题4分,共24分)13、5,.【分析】一元二次方程化为一般形式后,找出一次项系数与常数项即可.【详解】解:方程整理得:,则一次项系数、常数项分别为5,;故答案为:5,.【点睛】此题考查了一元二次方程的一般形式,其一般形式为.14、x1=5,x2=7【分析】根据题意利用ab=0得到a=0或b=0,求出解即可.【详解】解:方程(x﹣5)(x﹣7)=0,可得x﹣5=0或x﹣7=0,解得:x1=5,x2=7,故答案为:x1=5,x2=7.【点睛】本题考查解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.15、1【分析】由角角相等证明△ABC∽△AED,其性质求得AB的长为1.【详解】如图所示:∵∠ABC=∠AED,∠A=∠A,∴△ABC∽△AED,∴,∴AB=,又∵DE=2,AE=3,BC=6,∴AB==1,故答案为1.【点睛】本题主要考查了相似三角形的判定与性质综合,属于基础题型.16、4【解析】根据垂径定理以及勾股定理即可求答案.【详解】连接OA,设CD=x,∵OA=OC=10,∴OD=10﹣x,∵OC⊥AB,∴由垂径定理可知:AB=16,由勾股定理可知:102=82+(10﹣x)2∴x=4,∴CD=4,故答案为:4【点睛】本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.17、【分析】由平行四边形的性质得AB∥DC,AB=DC;平行直线证明△BEF∽△DCF,其性质线段的和差求得,三角形的面积公式求出两个三角形的面积比为2:1.【详解】∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴△BEF∽△DCF,∴,又∵BE=AB−AE,AB=1,AE=3,∴BE=2,DC=1,∴,又∵S△BEF=•EF•BH,S△DCF=•FC•BH,∴,故答案为2:1.【点睛】本题综合考查了平行四边形的性质,相似三角形的判定与性质,三角形的面积公式等相关知识点,重点掌握相似三角形的判定与性质.18、2【分析】根据根的判别式,令,可得,解方程求出b=﹣2a,再把b代入原方程,根据韦达定理:即可.【详解】当关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根时,,即,解得b=﹣2a或b=2a(舍去),原方程可化为ax2﹣2ax+5a=0,则这两个相等实数根的和为.故答案为:2.【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。三、解答题(共78分)19、(1);(2)证明见解析.【分析】(1)作于点,由直角三角形斜边上的中线等于斜边的一半可推出,,在中,利用三角函数求出BP,FP,在等腰三角形中,求出BE,再由勾股定理求出AB,进而得到BC和CP,再次利用勾股定理即可求出CF的长度.(2)过作垂直于点,得矩形,首先证明,得,再证明,可推出得.【详解】解:(1)中,为中线,,,.作于点,如图,中,在等腰三角形中,,由勾股定理求得,(2)过作垂直于点,得矩形,∵AB∥CD∴∠MAO=∠GCO在△AMO和△CGO中,∵∠MAO=∠GCO,AO=CO,∠AOM=∠COG∴△AMO≌△CGO(ASA)∴AM=GC∵四边形BCGP为矩形,∴GC=PB,PG=BC=AB∵AE⊥HG∴∠H+∠BAE=90°又∵∠AEB+∠BAE=90°∴∠AEB=∠H在△ABE和△GPH中,∵∠AEB=∠H,∠ABE=∠GPH=90°,AB=PG∴△ABE≌△GPH(AAS)∴BE=PH又∵CG=PB=AM∴BE=PH=PB+BH=CG+BH=AM+BH即AM+BH=BE.【点睛】本题考查了正方形和矩形的性质,三角函数,勾股定理,以及全等三角形的判定和性质,正确作出辅助线,利用全等三角形对应边相等将线段进行转化是解题的关键.20、(1)时,每天的利润是1350元;(2)单价为60元时,每天利润最大,最大利润是1600元【分析】(1)根据每天的利润=单件的利润×销售数量列出方程,然后解方程即可;(2)根据每天的利润=单件的利润×销售数量表示出每天的销售利润,再利用二次函数的性质求最大值即可.【详解】(1)由题意得,即,解得:,∵物价部门要求每件不得高于60元,∴,即时每天的利润是1350元;(2)由题意得:,∵抛物线开口向下,对称轴为,在对称轴左侧,随的增大而增大,且,∴当时,(元),当时,售价为(元),∴单价为60元时,每天利润最大,最大利润是1600元.【点睛】本题主要考查一元二次方程和二次函数的应用,掌握一元二次方程的解法和二次函数的性质是解题的关键.21、(1)A(-1,0),;(2);(3)P的坐标为(1,)或(1,-4).【分析】(1)在中,令y=0,得到,,得到A(-1,0),B(3,0),由直线l经过点A,得到,故,令,即,由于CD=4AC,故点D的横坐标为4,即有,得到,从而得出直线l的函数表达式;(2)过点E作EF∥y轴,交直线l于点F,设E(,),则F(,),EF==,S△ACE=S△AFE-S△CFE==,故△ACE的面积的最大值为,而△ACE的面积的最大值为,所以,解得;(3)令,即,解得,,得到D(4,5a),因为抛物线的对称轴为,设P(1,m),然后分两种情况讨论:①若AD是矩形的一条边,②若AD是矩形的一条对角线.【详解】解:(1)∵=,令y=0,得到,,∴A(-1,0),B(3,0),∵直线l经过点A,∴,,∴,令,即,∵CD=4AC,∴点D的横坐标为4,∴,∴,∴直线l的函数表达式为;(2)过点E作EF∥y轴,交直线l于点F,设E(,),则F(,),EF==,S△ACE=S△AFE-S△CFE===,∴△ACE的面积的最大值为,∵△ACE的面积的最大值为,∴,解得;(3)令,即,解得,,∴D(4,5a),∵,∴抛物线的对称轴为,设P(1,m),①若AD是矩形的一条边,则Q(-4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴,∴,即,∵,∴,∴P1(1,);②若AD是矩形的一条对角线,则线段AD的中点坐标为(,),Q(2,),m=,则P(1,8a),∵四边形APDQ为矩形,∴∠APD=90°,∴,∴,即,∵,∴,∴P2(1,-4).综上所述,以点A、D、P、Q为顶点的四边形能成为矩形,点P的坐标为(1,)或(1,-4).考点:二次函数综合题.22、(1),理由见解析;(2)见解析【分析】(1)由四边形AEFD是平行四边形可得AD=EF,根据条件可证四边形ABED是平行四边形,四边形AFCD是平行四边形,所以AD=BE,AD=FC,所以AD=BC;(2)根据矩形的判定和定义,对角线相等的平行四边形是矩形.只要证明AF=DE即可得出结论.【详解】证明:(1)AD=BC理由如下:

∵AD∥BC,AB∥DE,AF∥DC,

∴四边形ABED和四边形AFCD都是平行四边形.

∴AD=BE,AD=FC,

又∵四边形AEFD是平行四边形,

∴AD=EF.

∴AD=BE=EF=FC.∴;(2)证明:∵四边形ABED和四边形AFCD都是平行四边形,

∴DE=AB,AF=DC.

∵AB=DC,

∴DE=AF.

又∵四边形AEFD是平行四边形,

∴平行四边形AEFD是矩形.考点:1.平行四边形的判定与性质;2.矩形的判定.23、(1);(2)王师傅必须在7米以内.【分析】(1)由抛物线的顶点坐标为(3,5),设抛物线解析式为y=a(x-3)+5,把(8,0)单人宽求出a的值,即可得抛物线解析式;(2)把y=1.8代入解析式求出x的值,根据函数图像的对称性求出负半轴的坐标即可.【详解】(1)设,过点∴代入,解得∴抛物线(第一象限部分)的函数表达式为(2)∴或-1,图象对称负半轴为-7答:王师傅必须在7米以内.【点睛】本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数图象上点的坐标特征求出当y=1.8时x的值.24、(1)见解析;(2)时,S的值为2【解析】(1)分两种情况讨论:①当k=1时,方程是一元一次方程,有实数根;②当k≠1时,方程是一元二次方程,所以证明判别式是非负数即可;

(2)由韦达定理得,代入到中,可求得k的值.【详解】解:(1)①当,即k=1时,方程为一元一次方程,∴是方程的一个解.②当时,时,方程为一元二次方程,则,∴方程有两不相等的实数根.综合①②得,无论k为何值,方程总有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论