版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章
平面向量、复数第3课时平面向量的数量积及其应用考试要求理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系.掌握数量积的坐标表达式,会进行平面向量数量积的运算.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.会用向量的方法解决某些简单的平面几何问题.链接教材夯基固本
[0,π]
θ=0θ=π|a||b|cosθ0
投影投影向量|a|cosθe
x1x2+y1y2
x1x2+y1y2=06.平面几何中的向量方法(1)用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系;(3)把运算结果“翻译”成几何关系.
×√××
2.(人教A版必修第二册P20练习T3改编)若a·b=-6,|a|=8,与a方向相同的单位向量为e,则向量b在向量a上的投影向量为________.
√
3.(人教A版必修第二册P23习题6.2T11改编)已知向量a,b的夹角为60°,|a|=2,|b|=1,则|a+2b|=________.
8
典例精研核心考点
√11[四字解题]读想算思数量积的求解方法投影法数量积的几何意义数形结合基向量法数量积的运算三角形法则坐标法建系,求相关点的坐标,建立函数几何问题代数化,函数思想
√名师点评
计算平面向量数量积的主要方法(1)利用定义:a·b=|a||b|cos〈a,b〉.(2)利用坐标运算,若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.(3)利用基底法求数量积.(4)灵活运用平面向量数量积的几何意义.
√-2
√
考向3向量的垂直问题[典例4]
(2023·新高考Ⅰ卷)已知向量a=(1,1),b=(1,-1).若(a+λb)⊥(a+μb),则(
)A.λ+μ=1
B.λ+μ=-1C.λμ=1
D.λμ=-1D
[因为a=(1,1),b=(1,-1),所以a+λb=(1+λ,1-λ),a+μb=(1+μ,1-μ),由(a+λb)⊥(a+μb)可得,(a+λb)·(a+μb)=0,即(1+λ)(1+μ)+(1-λ)(1-μ)=0,整理得λμ=-1.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030投资银行行业项目分项收费标准调研客户融资需求评估管理报告
- 2025-2030批发零售业市场营销策略业态组合投资评估规划分析研究计划
- 2025-2030我国金融服务业数字化转型深度调研及行业未来发展趋势预判分析报告
- 2026年多渠道营销在房地产数字化中的应用
- 2026年悬索桥与景观优雅的美学
- 课堂教学规划培训
- 课堂培训安全管理制度课件
- 2026年大跨度桥梁的抗震性能评估研究
- 建筑项目环保管理实施细则
- 汽车维修基础技能培训手册
- 高二化学上学期期末试题带答案解析
- 高标准农田建设培训课件
- 体检中心收费与财务一体化管理方案
- 解答题 概率与统计(专项训练12大题型+高分必刷)(原卷版)2026年高考数学一轮复习讲练测
- 2024-2025学年北京市海淀区第二十中学高二上学期期末物理试题(含答案)
- 金属加工工艺规划
- 四川省内江市2024-2025学年高二上学期期末检测化学试题
- 送你一朵小红花评语
- 广东省深圳市龙岗区2024-2025学年二年级上学期学科素养期末综合数学试卷(含答案)
- 临床成人吞咽障碍患者口服给药护理
- (16)普通高中体育与健康课程标准日常修订版(2017年版2025年修订)
评论
0/150
提交评论