版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年安徽省铜都双语学校中考数学猜题卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.42.2017年新设了雄安新区,周边经济受到刺激综合实力大幅跃升,其中某地区生产总值预计可增长到305.5亿元其中305.5亿用科学记数法表示为()A.305.5×104B.3.055×102C.3.055×1010D.3.055×10113.PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为()A. B. C. D.4.点A(-2,5)关于原点对称的点的坐标是()A.(2,5)B.(2,-5)C.(-2,-5)D.(-5,-2)5.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为()A.﹣2 B.﹣1 C.1 D.26.已知方程x2﹣x﹣2=0的两个实数根为x1、x2,则代数式x1+x2+x1x2的值为()A.﹣3 B.1 C.3 D.﹣17.下列各数中,为无理数的是()A. B. C. D.8.如图,OP平分∠AOB,PC⊥OA于C,点D是OB上的动点,若PC=6cm,则PD的长可以是()A.7cm B.4cm C.5cm D.3cm9.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA的值为()A. B. C. D.310.如图,一张半径为的圆形纸片在边长为的正方形内任意移动,则在该正方形内,这张圆形纸片“能接触到的部分”的面积是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点至多拐一次弯的路径长称为P,Q的“实际距离”如图,若,,则P,Q的“实际距离”为5,即或环保低碳的共享单车,正式成为市民出行喜欢的交通工具设A,B两个小区的坐标分别为,,若点表示单车停放点,且满足M到A,B的“实际距离”相等,则______.12.分解因式:=____13.如图放置的正方形,正方形,正方形,…都是边长为的正方形,点在轴上,点,…,都在直线上,则的坐标是__________,的坐标是______.14.如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(-3,0),B(0,6)分别在x轴,y轴上,反比例函数y=(x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为__.15.如图,点A1,B1,C1,D1,E1,F1分别是正六边形ABCDEF六条边的中点,连接AB1,BC1,CD1,DE1,EF1,FA1后得到六边形GHIJKL,则S六边形GHIJKI:S六边形ABCDEF的值为____.16.分解因式___________17.分解因式a3﹣6a2+9a=_________________.三、解答题(共7小题,满分69分)18.(10分)如图,在中,,的垂直平分线交于,交于,射线上,并且.()求证:;()当的大小满足什么条件时,四边形是菱形?请回答并证明你的结论.19.(5分)如图,是的直径,是圆上一点,弦于点,且.过点作的切线,过点作的平行线,两直线交于点,的延长线交的延长线于点.(1)求证:与相切;(2)连接,求的值.20.(8分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=交x轴于点D.(1)求抛物线的解析式;(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.21.(10分)如图,儿童游乐场有一项射击游戏.从O处发射小球,将球投入正方形篮筐DABC.正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3).小球按照抛物线y=﹣x2+bx+c飞行.小球落地点P坐标(n,0)(1)点C坐标为;(2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);(3)验证:随着n的变化,抛物线的顶点在函数y=x2的图象上运动;(4)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围.22.(10分)如图,AB为⊙O直径,C为⊙O上一点,点D是的中点,DE⊥AC于E,DF⊥AB于F.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)若OF=4,求AC的长度.23.(12分)我市计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙两队先合做10天,那么余下的工程由乙队单独完成还需5天.这项工程的规定时间是多少天?已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成.则该工程施工费用是多少?24.(14分)计算:(1)﹣12018+|﹣2|+2cos30°;(2)(a+1)2+(1﹣a)(a+1);
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.2、C【解析】解:305.5亿=3.055×1.故选C.3、C【解析】试题分析:大于0而小于1的数用科学计数法表示,10的指数是负整数,其绝对值等于第一个不是0的数字前所有0的个数.考点:用科学计数法计数4、B【解析】
根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).【详解】根据中心对称的性质,得点P(−2,5)关于原点对称点的点的坐标是(2,−5).故选:B.【点睛】考查关于原点对称的点的坐标特征,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).5、C【解析】
先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.【详解】a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.故选C.【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.6、D【解析】分析:根据一元二次方程根与系数的关系求出x1+x2和x1x2的值,然后代入x1+x2+x1x2计算即可.详解:由题意得,a=1,b=-1,c=-2,∴,,∴x1+x2+x1x2=1+(-2)=-1.故选D.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.7、D【解析】A.=2,是有理数;B.=2,是有理数;C.,是有理数;D.,是无理数,故选D.8、A【解析】
过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,再根据垂线段最短解答即可.【详解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,则PD的最小值是6cm,故选A.【点睛】考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.9、B【解析】
根据勾股定理和三角函数即可解答.【详解】解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,设a=x,则c=3x,b==2x.即tanA==.故选B.【点睛】本题考查勾股定理和三角函数,熟悉掌握是解题关键.10、C【解析】
这张圆形纸片减去“不能接触到的部分”的面积是就是这张圆形纸片“能接触到的部分”的面积.【详解】解:如图:∵正方形的面积是:4×4=16;扇形BAO的面积是:,∴则这张圆形纸片“不能接触到的部分”的面积是4×1-4×=4-π,∴这张圆形纸片“能接触到的部分”的面积是16-(4-π)=12+π,故选C.【点睛】本题主要考查了正方形和扇形的面积的计算公式,正确记忆公式是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、1.【解析】
根据两点间的距离公式可求m的值.【详解】依题意有,解得,故答案为:1.【点睛】考查了坐标确定位置,正确理解实际距离的定义是解题关键.12、x(y+2)(y-2)【解析】
原式提取x,再利用平方差公式分解即可.【详解】原式=x(y2-4)=x(y+2)(y-2),故答案为x(y+2)(y-2).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13、【解析】
先求出OA的长度,然后利用含30°的直角三角形的性质得到点D的坐标,探索规律,从而得到的坐标即可.【详解】分别过点作y轴的垂线交y轴于点,∵点B在上设∴同理,都是含30°的直角三角形∵,∴同理,点的横坐标为纵坐标为故点的坐标为故答案为:;.【点睛】本题主要考查含30°的直角三角形的性质,找到点的坐标规律是解题的关键.14、(-2,7).【解析】
解:过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(﹣3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(﹣7,2),∴反比例函数的解析式为:y=﹣①,点C的坐标为:(﹣4,8).设直线BC的解析式为:y=kx+b,则解得:∴直线BC的解析式为:y=﹣x+6②,联立①②得:或(舍去),∴点E的坐标为:(﹣2,7).故答案为(﹣2,7).15、.【解析】
设正六边形ABCDEF的边长为4a,则AA1=AF1=FF1=2a.求出正六边形的边长,根据S六边形GHIJKI:S六边形ABCDEF=()2,计算即可;【详解】设正六边形ABCDEF的边长为4a,则AA1=AF1=FF1=2a,作A1M⊥FA交FA的延长线于M,在Rt△AMA1中,∵∠MAA1=60°,∴∠MA1A=30°,∴AM=AA1=a,∴MA1=AA1·cos30°=a,FM=5a,在Rt△A1FM中,FA1=,∵∠F1FL=∠AFA1,∠F1LF=∠A1AF=120°,∴△F1FL∽△A1FA,∴,∴,∴FL=a,F1L=a,根据对称性可知:GA1=F1L=a,∴GL=2a﹣a=a,∴S六边形GHIJKI:S六边形ABCDEF=()2=,故答案为:.【点睛】本题考查正六边形与圆,解直角三角形,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题.16、【解析】
原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x(y2+2y+1)=2x(y+1)2,故答案为2x(y+1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17、a(a﹣3)1.【解析】a3﹣6a1+9a=a(a1﹣6a+9)=a(a﹣3)1.故答案为a(a﹣3)1.三、解答题(共7小题,满分69分)18、(1)见解析;(2)见解析【解析】
(1)求出EF∥AC,根据EF=AC,利用平行四边形的判定推出四边形ACEF是平行四边形即可;(2)求出CE=AB,AC=AB,推出AC=CE,根据菱形的判定推出即可.【详解】(1)证明:∵∠ACB=90°,DE是BC的垂直平分线,∴∠BDE=∠ACB=90°,∴EF∥AC,∵EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)当∠B=30°时,四边形ACEF是菱形,证明:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE是BC的垂直平分线,∴BD=DC,∵DE∥AC,∴BE=AE,∵∠ACB=90°,∴CE=AB,∴CE=AC,∵四边形ACEF是平行四边形,∴四边形ACEF是菱形,即当∠B=30°时,四边形ACEF是菱形.【点睛】本题考查了菱形的判定平行四边形的判定线段垂直平分线,含30度角的直角三角形性质,直角三角形斜边上中线性质等知识点的应用综合性比较强,有一定的难度.19、(1)见解析;(2)【解析】
(1)连接,,易证为等边三角形,可得,由等腰三角形的性质及角的和差关系可得∠1=30°,由于可得∠DCG=∠CDA=∠60°,即可求出∠OCG=90°,可得与相切;(2)作于点.设,则,.根据两组对边互相平行可证明四边形为平行四边形,由可证四边形为菱形,由(1)得,从而可求出、的值,从而可知的长度,利用锐角三角函数的定义即可求出的值.【详解】(1)连接,.∵是的直径,弦于点,∴,.∵,∴.∴为等边三角形.∴,∠DAE=∠EAC=30°,∵OA=OC,∴∠OAC=∠OCA=30°,∴∠1=∠DCA-∠OCA=30°,∵,∴∠DCG=∠CDA=∠60°,∴∠OCG=∠DCG+∠1=60°+30°=90°,∴.∴与相切.(2)连接EF,作于点.设,则,.∵与相切,∴.又∵,∴.又∵,∴四边形为平行四边形.∵,∴四边形为菱形.∴,.由(1)得,∴,.∴.∵在中,,∴.【点睛】本题考查圆的综合问题,涉及切线的判定与性质,菱形的判定与性质,等边三角形的性质及锐角三角函数,考查学生综合运用知识的能力,熟练掌握相关性质是解题关键.20、(1);(1),E(1,1);(3)存在,P点坐标可以为(1+,5)或(3,5).【解析】
(1)设B(x1,5),由已知条件得,进而得到B(2,5).又由对称轴求得b.最终得到抛物线解析式.(1)先求出直线BC的解析式,再设E(m,=﹣m+1.),F(m,﹣m1+m+1.)求得FE的值,得到S△CBF﹣m1+2m.又由S四边形CDBF=S△CBF+S△CDB,得S四边形CDBF最大值,最终得到E点坐标.(3)设N点为(n,﹣n1+n+1),1<n<2.过N作NO⊥x轴于点P,得PG=n﹣1.又由直角三角形的判定,得△ABC为直角三角形,由△ABC∽△GNP,得n=1+或n=1﹣(舍去),求得P点坐标.又由△ABC∽△GNP,且时,得n=3或n=﹣2(舍去).求得P点坐标.【详解】解:(1)设B(x1,5).由A(﹣1,5),对称轴直线x=.∴解得,x1=2.∴B(2,5).又∵∴b=.∴抛物线解析式为y=,(1)如图1,∵B(2,5),C(5,1).∴直线BC的解析式为y=﹣x+1.由E在直线BC上,则设E(m,=﹣m+1.),F(m,﹣m1+m+1.)∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.由S△CBF=EF•OB,∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.又∵S△CDB=BD•OC=×(2﹣)×1=∴S四边形CDBF=S△CBF+S△CDB═﹣m1+2m+.化为顶点式得,S四边形CDBF=﹣(m﹣1)1+.当m=1时,S四边形CDBF最大,为.此时,E点坐标为(1,1).(3)存在.如图1,由线段FG绕点G顺时针旋转一个角α(5°<α<95°),设N(n,﹣n1+n+1),1<n<2.过N作NO⊥x轴于点P(n,5).∴NP=﹣n1+n+1,PG=n﹣1.又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.AB1=51=15.∴AC1+BC1=AB1.∴△ABC为直角三角形.当△ABC∽△GNP,且时,即,整理得,n1﹣1n﹣6=5.解得,n=1+或n=1﹣(舍去).此时P点坐标为(1+,5).当△ABC∽△GNP,且时,即,整理得,n1+n﹣11=5.解得,n=3或n=﹣2(舍去).此时P点坐标为(3,5).综上所述,满足题意的P点坐标可以为,(1+,5),(3,5).【点睛】本题考查求抛物线,三角形的性质和面积的求法,直角三角形的判定,以及三角形相似的性质,属于较难题.21、(1)(3,3);(2)顶点N坐标为(,);(3)详见解析;(4)<n<.【解析】
(1)由正方形的性质及A、B、D三点的坐标求得AD=BC=1即可得;(2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,据此可得函数解析式,配方成顶点式即可得出答案;(3)将点N的坐标代入y=x2,看是否符合解析式即可;(4)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y>3,当x=3时y<2,据此列出关于n的不等式组,解之可得.【详解】(1)∵A(2,2),B(3,2),D(2,3),∴AD=BC=1,则点C(3,3),故答案为:(3,3);(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑龙江省齐齐哈尔市建华区等五校2024-2025学年九年级上学期10月期中物理试题
- 呼伦贝尔学院《教育测量与评价》2021-2022学年第一学期期末试卷
- 红河学院《中国画基础》2022-2023学年第一学期期末试卷
- 红河学院《西方音乐史与名作赏析》2021-2022学年第一学期期末试卷
- 衡阳师范学院《中学地理教学案例分析》2023-2024学年第一学期期末试卷
- 衡阳师范学院《外国音乐史与作品欣赏》2022-2023学年第一学期期末试卷
- 有关护士演讲稿六篇
- 有关新学期学习计划范文集合8篇
- 足疗店跨行合作协议书范文范本
- 重案组联手合作协议书范文
- 《实名认证》课件
- 健康关爱女性知识讲座
- 课地球公转与四季变化
- 公司业绩提成方案
- 高效数据标注流程
- 2024年物流配送行业无人机配送方案
- 全球海盗史:从维京人到索马里海盗
- 北京市大兴区2023-2024学年九年级上学期期末化学试题
- 琵琶简介课件
- 人美版全国小学美术优质课一等奖《摆花样》课件
- 初中道德与法治学习方法指导课件
评论
0/150
提交评论