版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.教育局组织学生篮球赛,有x支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为()A. B. C. D.2.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在.和,则该袋子中的白色球可能有()A.6个 B.16个 C.18个 D.24个3.如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是()A. B. C. D.4.二次函数y=kx2+2x+1的部分图象如图所示,则k的取值范围是()A.k≤1 B.k≥1 C.k<1 D.0<k<15.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米.将439000用科学记数法表示应为()A.0.439×106 B.4.39×106 C.4.39×105 D.139×1036.如图,是的直径,点在上,,则的度数为()A. B. C. D.7.下列四个点中,在反比例函数的图象上的是()A.(3,﹣2) B.(3,2) C.(2,3) D.(﹣2,﹣3)8.已知一个正多边形的一个外角为锐角,且其余弦值为,那么它是正()边形.A.六 B.八 C.十 D.十二9.如图,将命题“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”改写成“已知……求证……”的形式,下列正确的是()A.已知:在⊙O中,∠AOB=∠COD,弧AB=弧CD.求证:AB=CDB.已知:在⊙O中,∠AOB=∠COD,弧AB=弧BC.求证:AD=BCC.已知:在⊙O中,∠AOB=∠COD.求证:弧AD=弧BC,AD=BCD.已知:在⊙O中,∠AOB=∠COD.求证:弧AB=弧CD,AB=CD10.若抛物线经过点,则的值在().A.0和1之间 B.1和2之间 C.2和3之间 D.3和4之间二、填空题(每小题3分,共24分)11.如图,绕着点顺时针旋转得到,连接,延长交于点,若,则的长为__________.12.如图,抛物线与直线的两个交点坐标分别为,则关于x的方程的解为________.13.若是方程的一个根,则代数式的值等于______.14.抛物线y=(x-2)2+3的顶点坐标是______.15.若,则=___________.16.一元二次方程x2﹣4=0的解是._________17.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是______________.18.如图,D、E分别是△ABC的边AB,AC上的点,=,AE=2,EC=6,AB=12,则AD的长为_____.三、解答题(共66分)19.(10分)图①、图②均是6×6的正方形网格,每个小正方形的顶点称为格点.线段AB的端点均在格点上,按下列要求画出图形.(1)在图①中找到两个格点C,使∠BAC是锐角,且tan∠BAC=;(2)在图②中找到两个格点D,使∠ADB是锐角,且tan∠ADB=1.20.(6分)某文物古迹遗址每周都吸引大量中外游客前来参观,如果游客过多,对文物古迹会产生不良影响,但同时考虑到文物的修缮和保存费用的问题,还要保证有一定的门票收入,因此遗址的管理部门采取了升、降门票价格的方法来控制参观人数.在实施过程中发现:每周参观人数y(人)与票价x(元)之间恰好构成一次函数关系:y=﹣500x+1.在这样的情况下,如果要确保每周有40000元的门票收入,那么门票价格应定为多少元?21.(6分)如图,在平面直角坐标系中,抛物线的图象与x轴交于,B两点,与y轴交于点,对称轴与x轴交于点H.(1)求抛物线的函数表达式(2)直线与y轴交于点E,与抛物线交于点P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若的面积为,求点P,Q的坐标.(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK绕点G逆时针旋转90°,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标不存在,请说明理由.22.(8分)如图,内接于,是的直径,是上一点,弦交于点,弦于点,连接,,且.(1)求证:;(2)若,,求的长.23.(8分)如图,有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示);(2)求两次摸出的牌面图形既是中心对称图形又是轴对称图形的概率.24.(8分)先化简,再求值:(x-1)÷(x-),其中x=+125.(10分)全国第二届青年运动会是山西省历史上第一次举办的大型综合性运动会,太原作为主赛区,新建了很多场馆,其中在汾河东岸落成了太原水上运动中心,它的终点塔及媒体中心是一个以“大帆船”造型(如图1),外观极具创新,这里主要承办赛艇、皮划艇、龙舟等项目的比赛.“青春”数学兴趣小组为了测量“大帆船”AB的长度,他们站在汾河西岸,在与AB平行的直线l上取了两个点C、D,测得CD=40m,∠CDA=110°,∠ACB=18.5°,∠BCD=16.5°,如图1.请根据测量结果计算“大帆船”AB的长度.(结果精确到0.1m,参考数据:sin16.5°≈0.45,tan16.5°≈0.50,≈1.41,≈1.73)26.(10分)某居民小区要在一块一边靠墙的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为32m的栅栏围成(如图所示).如果墙长16m,满足条件的花园面积能达到120m2吗?若能,求出此时BC的值;若不能,说明理由.
参考答案一、选择题(每小题3分,共30分)1、A【分析】先列出x支篮球队,每两队之间都比赛一场,共可以比赛x(x-1)场,再根据题意列出方程为.【详解】解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,
∴共比赛场数为,
故选:A.【点睛】本题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.2、B【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【详解】解:∵摸到红色球、黑色球的频率稳定在0.15和0.45,
∴摸到白球的频率为1-0.15-0.45=0.4,
故口袋中白色球的个数可能是40×0.4=16个.
故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.3、C【分析】根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP∽△PCD,根据相似三角形的性质即可得出y=-x2+x,对照四个选项即可得出.【详解】∵△ABC为等边三角形,
∴∠B=∠C=60°,BC=AB=a,PC=a-x.
∵∠APD=60°,∠B=60°,
∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,
∴∠BAP=∠CPD,
∴△ABP∽△PCD,∴,即,∴y=-x2+x.故选C.【点睛】考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-x2+x是解题的关键.4、D【分析】由二次函数y=kx2+2x+1的部分图象可知开口朝上以及顶点在x轴下方进行分析.【详解】解:由图象可知开口朝上即有0<k,又因为顶点在x轴下方,所以顶点纵坐标从而解得k<1,所以k的取值范围是0<k<1.故选D.【点睛】本题考查二次函数图像性质,根据开口朝上以及顶点在x轴下方分别代入进行分析.5、C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将439000用科学记数法表示为4.39×1.
故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、B【分析】连接AC,根据圆周角定理,分别求出∠ACB=90,∠ACD=20,即可求∠BCD的度数.【详解】连接AC,
∵AB为⊙O的直径,
∴∠ACB=90°,
∵∠AED=20°,
∴∠ACD=∠AED=20°,
∴∠BCD=∠ACB+∠ACD=90°+20°=110°,
故选:B.【点睛】本题考查的是圆周角定理:①直径所对的圆周角为直角;②在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7、A【分析】根据点在曲线上点的坐标满足方程的关系,将各点坐标代入验算,满足的点即为所求【详解】点(3,﹣2)满足,符合题意,点(3,2)不满足,不符合题意,点(2,3)不满足,不符合题意,点(﹣2,﹣3)不满足,不符合题意故选A.8、B【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.【详解】∵一个外角为锐角,且其余弦值为,∴外角=45°,∴360÷45=1.故它是正八边形.故选:B.【点睛】本题考查根据正多边形的外角判断边数,根据余弦值得到外角度数是解题的关键.9、D【分析】根据命题的概念把原命题写成:“如果...求证...”的形式.【详解】解:“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”,改写成:已知:在⊙O中,∠AOB=∠COD.求证:弧AB=弧CD,AB=CD故选:D【点睛】本题考查命题,掌握将命题改写为“如果...求证...”的形式,是解题的关键.10、D【分析】将点A代入抛物线表达式中,得到,根据进行判断.【详解】∵抛物线经过点,∴,∵,∴的值在3和4之间,故选D.【点睛】本题考查抛物线的表达式,无理数的估计,熟知是解题的关键.二、填空题(每小题3分,共24分)11、【分析】根据题意延长交于点,则,延长交于点,根据已知可以得到CC´,B´C´,BF,B´F;求出,∵△MEC´∽△BEC,得到求出CE即可.【详解】Rt△ABC绕着点顺时针旋转得到,.又.如图,延长交于点,则,延长交于点,则.,,即,解得,∵△MEC´∽△BEC,,,解得∴CE=CC´+EC´=3+=【点睛】此题主要考查了旋转变化的性质和特征,相似三角形的性质,熟记性质是解题的关键,注意相似三角形的选择.12、【详解】∵抛物线与直线的两个交点坐标分别为,∴方程组的解为,,即关于x的方程的解为.13、1【分析】把代入已知方程,求得,然后得的值即可.【详解】解:把代入已知方程得,∴,故答案为1.【点睛】本题考查一元二次方程的解以及代数式求值,注意已知条件与待求代数式之间的关系.14、(2,3)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.【详解】解:y=(x-2)2+3是抛物线的顶点式,
根据顶点式的坐标特点可知,顶点坐标为(2,3).
故答案为(2,3)【点睛】考查将解析式化为顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.15、【分析】根据题干信息,利用已知得出a=b,进而代入代数式求出答案即可.【详解】解:∵,∴a=b,∴=.故答案为:.【点睛】本题主要考查比例的性质,正确得出a=b,并利用代入代数式求值是解题关键.16、x=±1【解析】移项得x1=4,∴x=±1.故答案是:x=±1.17、【分析】直接利用概率公式求解.【详解】解:从袋子中随机取出1个球是红球的概率,故答案为:【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18、1【分析】把AE=2,EC=6,AB=12代入已知比例式,即可求出答案.【详解】解:∵=,AE=2,EC=6,AB=12,∴=,解得:AD=1,故答案为:1.【点睛】本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.三、解答题(共66分)19、(1)如图①点C即为所求作的点;见解析;(2)如图②,点D即为所求作的点,见解析.【分析】(1)在图①中找到两个格点C,使∠BAC是锐角,且tan∠BAC=;(2)在图②中找到两个格点D,使∠ADB是锐角,且tan∠ADB=1.【详解】解:(1)如图①点C即为所求作的点;(2)如图②,点D即为所求作的点.【点睛】本题考查了作图——应用与设计作图,解直角三角形.解决本题的关键是准确画图.20、门票价格应是20元/人.【分析】根据参观人数×票价=40000元,即可求出每周应限定参观人数以及门票价格.【详解】根据确保每周4万元的门票收入,得xy=40000即x(-500x+1)=40000x2-24x+80=0解得x1=20,x2=4把x1=20,x2=4分别代入y=-500x+1中得y1=2000,y2=10000因为控制参观人数,所以取x=20,答:门票价格应是20元/人.【点睛】考查了一元二次方程的应用,解题的关键是能够根据题意列出方程,难度不大.21、(1);(2);(3)【分析】(1)利用对称轴和A点坐标可得出,再设,代入C点坐标,求出a的值,即可得到抛物线解析式;(2)求C点和E点坐标可得出CE的长,再联立直线与抛物线解析式,得到,设点P,Q的横坐标分别为,利用根与系数的关系求出,再根据的面积可求出k的值,将k的值代入方程求出,即可得到P、Q的坐标;(3)先求直线AC解析式,再联立直线PQ与直线AC,求出交点G的坐标,设,,过G作MN∥y轴,过K作KN⊥MN于N,过K'作K'M⊥MN于M,然后证明△MGK'≌△NKG,推出MK'=NG,MG=NK,建立方程求出的坐标,再代入抛物线解析式求出m的值,即可得到K的坐标.【详解】解:(1)∵抛物线对称轴,点∴设抛物线的解析式为将点代入解析式得:,解得,∴抛物线的解析式为,即(2)当x=0时,∴C点坐标为(0,2),OC=2直线与y轴交于点E,当x=0时,∴点,OE=1∴联立和得:整理得:设点P,Q的横坐标分别为则是方程的两个根,∴∴∴的面积解得(舍)将k=3代入方程得:解得:∴∴(3)存在,设AC直线解析式为,代入A(4,0),C(0,2)得,解得,∴AC直线解析式为联立直线PQ与直线AC得,解得∴设,,如图,过G作MN∥y轴,过K作KN⊥MN于N,过K'作K'M⊥MN于M,∵∠KGK'=90°,∴∠MGK'+∠NGK=90°又∵∠NKG+∠NGK=90°∴∠MGK'=∠NKG在△MGK'和△NKG中,∵∠M=∠N=90°,∠MGK'=∠NKG,GK'=GK∴△MGK'≌△NKG(AAS)∴MK'=NG,MG=NK∴,解得即K'坐标为(,)代入得:解得:∴K的坐标为或【点睛】本题考查二次函数的综合问题,是中考常考的压轴题型,难度较大,需要熟练掌握待定系数法求函数解析式,二次函数与一元二次方程的关系,第(3)题构造全等三角形是解题的关键.22、(1)详见解析;(2)【分析】(1)证法一:连接,利用圆周角定理得到,从而证明,然后利用同弧所对的圆周角相等及三角形外角的性质得到,从而使问题得解;证法二:连接,,由圆周角定理得到,从而判定,得到,然后利用圆内接四边形对角互补可得,从而求得,使问题得解;(2)首先利用勾股定理和三角形面积求得AG的长,解法一:过点作于点,利用勾股定理求GH,CH,CD的长;解法二:过点作于点,利用AA定理判定,然后根据相似三角形的性质列比例式求解.【详解】(1)证法一:连接.∵为的直径,∴,∴∵,∴∴∴.∵∴∵,∴∴.证法二:连接,.∵为的直径,∴∵∴∴,∴∴∵∴∵∴∴∴∵四边形内接于,∴∴∴∴.(2)解:在中,,,,根据勾股定理得.连接,∵为的直径,∴∴∴∵∴∵∴∴∴四边形是平行四边形.∴.在中,,∴解法一:过点作于点∴在中,,∴在中,∴在中,∴解法二:过点作于点∴∵∴∵∴四边形为矩形∴.∵四边形为平行四边形,∴∴.∵,∴∴即∴【点睛】本题考查圆的综合知识,相似三角形的判定和性质,勾股定理解直角三角形,综合性较强,有一定难度.23、(1)见解析;(2)【分析】(1)用列表法或画出树状图分析数据、列出可能的情况即可.(2)A、B、D既是轴对称图形,也是中心对称图形,C是轴对称图形,不是中心对称图形.列举出所有情况,让两次摸牌的牌面图形既是中心对称图形又是轴对称图形的情况数除以总情况数即为所求的概率.【详解】(1)列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)(2)从表中可以得到,两次摸牌所有可能出现的结果共有16种,其中既是中心对称图形又是轴对称图形的有9种.故所求概率是.考点:1.列表法与树状图法;2.轴对称图形;3.中心对称图形.24、1+【分析】先化简分式,然后将x的值代入计算即可.【详解】解:原式=(x−1)÷,当x=+1时,原式=.【点睛】本题考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年桥梁漆项目规划申请报告模范
- 2024年太阳能控制器项目提案报告
- 关于在社交环境下维护孩子心理健康的策略探讨
- 2025健身房合同范本
- 2024年数控弧齿锥齿轮铣齿机项目提案报告模板
- 以科技赋能优化小学音乐律动教学效果
- 以医疗标准构建学生宿舍卫生环境体系
- 2024-2025学年高中政治第4单元当代国际社会第9课第1框国际社会的主要成员:主权国家和国际组织训练含解析
- 2024-2025学年新教材高中英语Unit5Music导读话题妙切入教案新人教版必修第二册
- 2024-2025学年高中英语Unit1FestivalsaroundtheworldSectionⅠWarmingUpandReading随堂演练新人教版必修3
- 幼儿园故事课件:《胸有成竹》
- (完整版)康复科管理制度
- 深度千分尺校准记录表
- GB/T 10000-2023中国成年人人体尺寸
- 电工安全用具课件
- 北师大版四年级数学上册《不确定性》评课稿
- 模板销售合同模板
- 对越自卫反击战专题培训课件
- 小学生简笔画社团活动记录
- 出境竹木草制品公司原辅料采购验收制度
- 2023年临床医学(军队文职)题库(共五套)含答案
评论
0/150
提交评论