版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.把抛物线向右平移个单位,再向下平移个单位,即得到抛物线()A.y=-(x+2)2+3 B.y=-(x-2)2+3 C.y=-(x+2)2-3 D.y=-(x-2)2-32.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在.和,则该袋子中的白色球可能有()A.6个 B.16个 C.18个 D.24个3.如图,过以为直径的半圆上一点作,交于点,已知,,则的长为()A.7 B.8 C.9 D.104.正六边形的半径为4,则该正六边形的边心距是()A.4 B.2 C.2 D.5.二次函数的图象如图所示,对称轴为直线,下列结论不正确的是()A.B.当时,顶点的坐标为C.当时,D.当时,y随x的增大而增大6.若反比例函数y=的图象经过点(2,-1),则该反比例函数的图象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限7.如图,△ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤168.某班同学要测量学校升国旗的旗杆的高度,在同一时刻,量得某一同学的身高是1.6m,影长为1m,旗杆的影长为7.5m,则旗杆的高度是()A.9m B.10m C.11m D.12m9.下列函数中,当x>0时,y随x的增大而增大的是()A.B.C.D.10.在某中学的迎国庆联欢会上有一个小嘉宾抽奖的环节,主持人把分别写有“我”、“爱”、“祖”、“国”四个字的四张卡片分别装入四个外形相同的小盒子并密封起来,由主持人随机地弄乱这四个盒子的顺序,然后请出抽奖的小嘉宾,让他在四个小盒子的外边也分别写上“我”、“爱”、“祖”、“国”四个字,最后由主持人打开小盒子取出卡片,如果每一个盒子上面写的字和里面小卡片上面写的字都不相同就算失败,其余的情况就算中奖,那么小嘉宾中奖的概率为()A. B. C. D.11.如图,点A、点B是函数y=的图象上关于坐标原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积是4,则k的值是()A.-2 B.±4 C.2 D.±212.已知点在抛物线上,则下列结论正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图1是一种广场三联漫步机,其侧面示意图,如图2所示,其中,.①点到地面的高度是__________.②点到地面的高度是____________.14.如图,在中,已知依次连接的三边中点,得,再依次连接的三边中点得,···,则的周长为_____________________.15.中,如果锐角满足,则_________度16.在中,,,,圆在内自由移动.若的半径为1,则圆心在内所能到达的区域的面积为______.17.一元二次方程的根是_____.18.如图,某海防响所发现在它的西北方向,距离哨所400米的处有一般船向正东方向航行,航行一段时间后到达哨所北偏东方向的处,则此时这般船与哨所的距离约为________米.(精确到1米,参考数据:,)三、解答题(共78分)19.(8分)如图,在10×10的网格中,有一格点△ABC(说明:顶点都在网格线交点处的三角形叫做格点三角形).(1)将△ABC先向右平移5个单位,再向上平移2个单位,得到△A'B'C',请直接画出平移后的△A'B'C';(2)将△A'B'C'绕点C'顺时针旋转90°,得到△A''B''C',请直接画出旋转后的△A''B''C';(3)在(2)的旋转过程中,求点A'所经过的路线长(结果保留π).20.(8分)如图,在足够大的空地上有一段长为米的旧墙,某人利用旧墙和木栏围成一个矩形菜园,其中,已知矩形菜园的一边靠墙,另三边一共用了米木栏.(1)若米,所围成的矩形菜园的面积为平方米,求所利用旧墙的长;(2)若米,求矩形菜园面积的最大值.21.(8分)如图,在中,AC=4,CD=2,BC=8,点D在BC边上,(1)判断与是否相似?请说明理由.(2)当AD=3时,求AB的长22.(10分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行,某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价和标价分别是多少元?(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出50辆;若每辆自行车每降价20元,每月可多售出5辆,求该型号自行车降价多少元时,每月可获利30000元?23.(10分)(1)计算:(2)解不等式组:,并求整数解。24.(10分)如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称.25.(12分)小明、小亮两人用如图所示的两个分隔均匀的转盘做游戏:分别转动两个转盘,转盘停止后,将两个指针所指数字相加(若指针恰好停在分割线上,则重转一次).如果这两个数字之和小于8(不包括8),则小明获胜;否则小亮获胜。(1)利用列表法或画树状图的方法表示游戏所有可能出现的结果;(2)这个游戏对双方公平吗?请说明理由.26.如图,在平面直角坐标系中,抛物线交轴于点,交轴正半轴于点,与过点的直线相交于另一点,过点作轴,垂足为.(1)求抛物线的解析式.(2)点是轴正半轴上的一个动点,过点作轴,交直线于点,交抛物线于点.①若点在线段上(不与点,重合),连接,求面积的最大值.②设的长为,是否存在,使以点,,,为顶点的四边形是平行四边形?若存在,求出的值;若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【详解】抛物线向右平移个单位,得:,再向下平移个单位,得:.故选:.【点睛】本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.2、B【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【详解】解:∵摸到红色球、黑色球的频率稳定在0.15和0.45,
∴摸到白球的频率为1-0.15-0.45=0.4,
故口袋中白色球的个数可能是40×0.4=16个.
故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.3、B【分析】根据条件得出,解直角三角形求出BD,根据勾股定理求出CD,代入,即可求出AC的长.【详解】∵AB为直径,
∴,
∵CD⊥AB,
∴,
∴,
∴,
∵,BC=6,
∴,∴,∴,∵,∴,∴.
故选:B.【点睛】本题考查了圆周角定理,勾股定理,解直角三角形的应用,能够正确解直角三角形是解此题的关键.4、C【分析】分析出正多边形的内切圆的半径就是正六边形的边心距,即为每个边长为4的正三角形的高,从而构造直角三角形即可解.【详解】解:半径为4的正六边形可以分成六个边长为4的正三角形,
而正多边形的边心距即为每个边长为4的正三角形的高,
∴正六多边形的边心距==2.故选C.【点睛】本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算.5、C【解析】根据对称轴公式和二次函数的性质,结合选项即可得到答案.【详解】解:∵二次函数∴对称轴为直线∴,故A选项正确;当时,∴顶点的坐标为,故B选项正确;当时,由图象知此时即∴,故C选项不正确;∵对称轴为直线且图象开口向上∴当时,y随x的增大而增大,故D选项正确;故选C.【点睛】本题考查二次函数,解题的关键是熟练掌握二次函数.6、D【解析】试题分析:反比例函数的图象经过点,求出K=-2,当K>0时反比例函数的图象在第一、三象限,当K〈0时反比例函数的图象在第二、四象限,因为-2〈0,D正确.故选D考点:反比例函数的图象的性质.7、C【解析】试题解析:由于△ABC是直角三角形,所以当反比例函数经过点A时k最小,进过点C时k最大,据此可得出结论.∵△ABC是直角三角形,∴当反比例函数经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.8、D【分析】因为在同一时刻同一地点任何物体的高与其影子长比值是相同的,所以同学的身高与其影子长的比值等于旗杆的高与其影子长的比值.【详解】设旗杆的高度为x,根据在同一时刻同一地点任何物体的高与其影子长比值是相同的,得:=,解得:x=1.6×7.5=12(m),∴旗杆的高度是12m.故选:D.【点睛】本题考查相似三角形的应用,熟知同一时刻物高与影长成正比是解题的关键.9、B【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断【详解】解:A、,一次函数,k<0,故y随着x增大而减小,错误;B、(x>0),故当图象在对称轴右侧,y随着x的增大而增大,正确;C、,k=1>0,分别在一、.三象限里,y随x的增大而减小,错误;D、(x>0),故当图象在对称轴右侧,y随着x的增大而减小,错误.故选B.【点睛】本题考查一次函数,二次函数及反比例函数的增减性,掌握函数图像性质利用数形结合思想解题是本题的解题关键.10、B【分析】得出总的情况数和失败的情况数,根据概率公式计算出失败率,从而得出中奖率.【详解】共有4×4=16种情况,失败的情况占3+2+1=6种,失败率为,中奖率为.故选:B.【点睛】本题考查了利用概率公式求概率.正确得出失败情况的总数是解答本题的关键.用到的知识点为:概率=所求情况数与总情况数之比.11、C【详解】解:∵反比例函数的图象在一、三象限,∴k>0,∵BC∥x轴,AC∥y轴,∴S△AOD=S△BOE=k,∵反比例函数及正比例函数的图象关于原点对称,∴A、B两点关于原点对称,∴S矩形OECD=1△AOD=k,∴S△ABC=S△AOD+S△BOE+S矩形OECD=1k=4,解得k=1.故选C.【点睛】本题考查反比例函数的性质.12、A【分析】分别计算自变量为1和2对应的函数值,然后对各选项进行判断.【详解】当x=1时,y1=−(x+1)+2=−(1+1)+2=−2;当x=2时,y=−(x+1)+2=−(2+1)+2=−7;所以.故选A【点睛】此题考查二次函数顶点式以及二次函数的性质,解题关键在于分析函数图象的情况二、填空题(每题4分,共24分)13、【分析】①过点A作,垂足为F,得出,BF=40,利用勾股定理可得出AF的长,即A到地面的高度②过点D作,垂足为H,可得出,,可求出AH的长度,从而得出D到底面的高度为AH+AF.【详解】解:过点A作,垂足为F,过点D作,垂足为H,如下图:①∵,∴,BF=40cm∴∴A到地面的高度为:.②∵∴,∴,∴∴AH=10,∴D到底面的高度为AH+AF=(10+)cm.【点睛】本题考查的知识点是等腰三角形的性质以及相似三角形的判定与性质,解题的关键是弄清题意,结合题目作出辅助线,再利用相似三角形性质求解.14、【分析】根据三角形的中位线定理得:A2B2=A1B1、B2C2=B1C1、C2A2=C1A1,则△A2B2C2的周长等于△A1B1C1的周长的一半,以此类推可求出△A5B5C5的周长为△A1B1C1的周长的.【详解】解:∵A2B2=A1B1、B2C2=B1C1、C2A2=C1A1,∴△A5B5C5的周长为△A1B1C1的周长的,∴△A5B5C5的周长为(7+4+5)×=1.故答案为1.【点睛】本题主要考查了三角形的中位线定理,灵活运用三角形的中位线定理并归纳规律是解答本题的关键.15、【分析】根据绝对值与偶数次幂的非负性,可得且,进而求出∠A,∠B的值,即可得到答案.【详解】∵,∴且,∴且,∴∠A=45°,∠B=30°,∵在中,,∴105°.故答案是:105°.【点睛】本题主要考查绝对值与偶数次幂的非负性,特殊三角函数以及三角形内角和定理,掌握绝对值与偶数次幂的非负性,是解题的关键.16、24【分析】根据题意做图,圆心在内所能到达的区域为△EFG,先求出AB的长,延长BE交AC于H点,作HM⊥AB于M,根据圆的性质可知BH平分∠ABC,故CH=HM,设CH=x=HM,根据Rt△AMH中利用勾股定理求出x的值,作EK⊥BC于K点,利用△BEK∽△BHC,求出BK的长,即可求出EF的长,再根据△EFG∽△BCA求出FG,即可求出△EFG的面积.【详解】如图,由题意点O所能到达的区域是△EFG,连接BE,延长BE交AC于H点,作HM⊥AB于M,EK⊥BC于K,作FJ⊥BC于J.∵,,,∴AB=根据圆的性质可知BH平分∠ABC∴故CH=HM,设CH=x=HM,则AH=12-x,BM=BC=9,∴AM=15-9=6在Rt△AMH中,AH2=HM2+AM2即AH2=HM2+AM2(12-x)2=x2+62解得x=4.5∵EK∥AC,∴△BEK∽△BHC,∴,即∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG∥AB,EF∥AC,FG∥BC,∴∠EGF=∠ABC,∠FEG=∠CAB,∴△EFG∽△ACB,故,即解得FG=8∴圆心在内所能到达的区域的面积为FG×EF=×8×6=24,故答案为24.【点睛】此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.17、【分析】利用因式分解法把方程化为x-3=0或x-2=0,然后解两个一次方程即可.【详解】解:或,所以.故答案为.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.18、566【分析】通过解直角△OAC求得OC的长度,然后通过解直角△OBC求得OB的长度即可.【详解】设与正北方向线相交于点,根据题意,所以,在中,因为,所以,中,因为,所以(米).故答案为566.【点睛】考查了解直角三角形的应用-方向角的问题.此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.三、解答题(共78分)19、(1)见解析,(2)见解析,(3)π【解析】(1)将三个顶点分别向右平移5个单位,再向上平移2个单位得到对应点,再首尾顺次连接即可得;(2)作出点A′,B′绕点C顺时针旋转90°得到的对应点,再首尾顺次连接可得;(3)根据弧长公式计算可得.【详解】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,△A″B″C′即为所求.(3)∵A′C′==,∠A′C′A″=90°,∴点A′所经过的路线长为=π,故答案为π.【点睛】本题主要考查作图﹣旋转变换和平移变换,解题的关键是熟练掌握旋转和平移变换的定义和性质,并据此得出变换后的对应点,也考查了弧长公式.20、(1)的长为;(2)当时,矩形菜园面积的最大值为.【分析】(1)设AB=xm,则BC=(100-2x)m,列方程求解即可;
(2)设AB=xm,由题意得关于x的二次函数,利用二次函数的性质即可解决问题.【详解】(1)设AB=,则BC,根据题意得,解得,,当时,,不合题意舍去;当时,,答:AD的长为;(2)设AD=,∴则时,的最大值为;答:当时,矩形菜园面积的最大值为.【点睛】本题考查了一元二次方程和二次函数在实际问题中的应用,根据题意正确列式并明确二次函数的相关性质,是解题的关键.21、(1),见解析;(2)【分析】(1)由可得以及∠C=∠C可证;(2)由可得,即可求出AB的长.【详解】解:(1)理由如下:∵AC=4,CD=2,BC=8,∴,∴,又∵∠C=∠C,∴,(2)∵,∴,∴;【点睛】本题考查了相似三角形的判定及运用,掌握相似三角形的判定及运用是解题的关键.22、(1)该型号自行车的进价为1000元,标价为1元;(2)该型号自行车降价100元或2元时,每月可获利30000元.【分析】(1)设该型号自行车的进价为x元,则标价为(1+50%)x元,根据利润=售价﹣进价结合按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同,即可得出关于x的一元一次方程,解之即可得出结论;(2)设该型号自行车降价y元,则平均每月可售出(50+y)辆,根据总利润=每辆的利润×销售数量,即可得出关于y的一元二次方程,解之即可得出结论.【详解】解:(1)设该型号自行车的进价为x元,则标价为(1+50%)x元,依题意,得:8×[0.9×(1+50%)x﹣x]=7×[(1+50%)x﹣100﹣x],解得:x=1000,∴(1+50%)x=1.答:该型号自行车的进价为1000元,标价为1元.(2)设该型号自行车降价y元,则平均每月可售出(50+y)辆,依题意,得:(1﹣1000﹣y)(50+y)=30000,整理,得:y2﹣300y+200=0,解得:y1=100,y2=2.答:该型号自行车降价100元或2元时,每月可获利30000元.【点睛】本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出一元二次方程.23、(1);(2)原不等式组的整数解为:-4,±1,±2,±1,0.【分析】(1)根据实数的运算法则计算即可;(2)先求出不等式组中每个不等式的解集,然后求出其公共解集,进而求其整数解即可.【详解】(1)解:(1)原式.(2)解:由①得≥;由②得≤1;∴﹣4≤x≤1.∴原不等式组的整数解为:-4,±1,±2,±1,0【点睛】本题考查了实数的混合运算和解不等式组,正确解出不等式组的解集是解决本题的关键.24、解:(1)所画△A1B1C1如图所示.(2)所画△A2B2C2如图所示.【分析】(1)图形的整体平移就是点的平移,找到图形中几个关键的点,也就是A,B,C点,依次的依照题目的要求平移得到对应的点,然后连接得到的点从而得到对应的图形;(2)在已知对称中心的前提下找到对应的对称图形,关键还是找点的对称点,找法是连接点与对称中心O点并延长相等的距离即为对称点的位置,最后将对称点依次连接得到关于O点成中心对称的图形。【详解】解:(1)所画△A1B1C1如图所示.(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业自动化中的智能优化算法考核试卷
- 人事行政培训职业道德与职业操守考核试卷
- 公司合并与收购的财务税务考虑考核试卷
- 森林改培与城市森林绿化考核试卷
- 梨花绘画课件教学课件
- DB11T 714.2-2010 电子政务运维服务支撑系统规范 第2部分:符合性测试
- 负反馈课件教学课件
- 食堂员工培训计划方案
- 《过秦论》培训课件
- 业务人员法律知识培训
- 江西省萍乡市2024-2025学年高二上学期期中考试地理试题
- 2023年贵州黔东南州州直机关遴选公务员考试真题
- 黑龙江省龙东地区2024-2025学年高二上学期阶段测试(二)(期中) 英语 含答案
- 4S店展厅改造装修合同
- 送货简易合同范本(2篇)
- 全国职业院校技能大赛赛项规程(高职)智能财税
- 七年级上册音乐教案 人音版
- 某小区住宅楼工程施工组织设计方案
- 3-4单元测试-2024-2025学年统编版语文六年级上册
- 2024年新青岛版六年级上册(六三制)科学全册知识点
- 小学数学计算专项训练之乘法分配律(提公因数)
评论
0/150
提交评论