天津市宝坻区名校2022年数学九上期末联考试题含解析_第1页
天津市宝坻区名校2022年数学九上期末联考试题含解析_第2页
天津市宝坻区名校2022年数学九上期末联考试题含解析_第3页
天津市宝坻区名校2022年数学九上期末联考试题含解析_第4页
天津市宝坻区名校2022年数学九上期末联考试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若数据,,…,的众数为,方差为,则数据,,…,的众数、方差分别是()A., B., C., D.,2.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同3.一组数据-3,2,2,0,2,1的众数是()A.-3 B.2 C.0 D.14.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:抽取件数501001502005008001000合格频数4288141176448720900估计出售2000件衬衣,其中次品大约是()A.50件 B.100件 C.150件 D.200件5.若函数y=的图象在其象限内y的值随x的增大而增大,则m的取值范围是()A.m>2 B.m<2 C.m>-2 D.m<-26.如图,是圆的直径,直线与圆相切于点,交圆于点,连接.若,则的度数是()A. B. C. D.7.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:98.如图所示,将Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,连接AD,若∠B=65°,则∠ADE=()A.20° B.25° C.30° D.35°9.下列函数中,函数值随自变量x的值增大而增大的是()A. B. C. D.10.一个几何体的三视图如图所示,那么这个几何体是()A. B. C. D.二、填空题(每小题3分,共24分)11.某中学为了了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3000名学生在该次数学考试中成绩小于60分的学生数是________.12.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是_____.13.已知扇形的圆心角为,所对的弧长为,则此扇形的面积是________.14.若一个三角形的两边长分别是4和6,第三边的长是方程x2﹣17x+60=0的一个根,则该三角形的第三边长是_____.15.若、是方程的两个实数根,且x1+x2=1-x1x2,则的值为________.16.如图,已知⊙O是△ABC的外接圆,若∠BOC=100°,则∠BAC=______.17.在四边形ABCD中,AD=BC,AD∥BC.请你再添加一个条件,使四边形ABCD是菱形.你添加的条件是_________.(写出一种即可)18.如图,某试验小组要在长50米,宽39米的矩形试验田中间开辟一横一纵两条等宽的小道,使剩余的面积是1800平方米,求小道的宽.若设小道的宽为米,则所列出的方程是_______(只列方程,不求解)三、解答题(共66分)19.(10分)如图①,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.(1)试找出图1中的一个损矩形;(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;(4)在图②中,过点M作MG⊥y轴于点G,连接DN,若四边形DMGN为损矩形,求D点坐标.20.(6分)如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请解答下列问题:(1)画出关于轴对称的,点的坐标为______;(2)在网格内以点为位似中心,把按相似比放大,得到,请画出;若边上任意一点的坐标为,则两次变换后对应点的坐标为______.21.(6分)网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2017年交易额为500亿元,2019年交易额为720亿元,求2017年至2019年“双十一”交易额的年平均增长率.22.(8分)如图,为的直径,直线于点.点在上,分别连接,,且的延长线交于点,为的切线交于点.(1)求证:;(2)连接,若,,求线段的长.23.(8分)如图,矩形的两边的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值;(2)若,求反比例函数的表达式.24.(8分)某服装柜在销售中发现:进货价为每件元,销售价为每件元的某品牌服装平均每天可售出件,现商场决定采取适当的降价措施,扩大销售量,增加盈利,经市场调查发现:如果每件服装降价元,那么平均每天就可多售出件,要想平均每天销售这种服装盈利元,同时又要使顾客得到较多的实惠,那么每件服装应降价多少元?25.(10分)某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.26.(10分)如图,在矩形ABCD中,AB=3,BC=4,点E是线段AC上的一个动点且=k(0<k<1),点F在线段BC上,且DEFH为矩形;过点E作MN⊥BC,分别交AD,BC于点M,N.(1)求证:△MED∽△NFE;(2)当EF=FC时,求k的值.(3)当矩形EFHD的面积最小时,求k的值,并求出矩形EFHD面积的最小值.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据众数定义和方差的公式来判断即可,数据,,…,原来数据相比都增加2,,则众数相应的加2,平均数都加2,则方差不变.【详解】解:∵数据,,…,的众数为,方差为,∴数据,,…,的众数是a+2,这组数据的方差是b.故选:C【点睛】本题考查了众数和方差,当一组数据都增加时,众数也增加,而方差不变.2、B【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.3、B【解析】一组数据中出现次数最多的数据是众数,根据众数的定义进行求解即可得.【详解】数据-3,2,2,0,2,1中,2出现了3次,出现次数最多,其余的都出现了1次,所以这组数据的众数是2,故选B.【点睛】本题考查了众数的定义,熟练掌握众数的定义是解题的关键.4、D【分析】求出次品率即可求出次品数量.【详解】2000×(件).故选:D.【点睛】本题考查了样本估计总体的统计方法,求出样本的次品率是解答本题的关键.5、B【分析】先根据反比例函数的性质列出关于m的不等式,求出m的取值范围即可.【详解】∵函数y=的图象在其象限内y的值随x值的增大而增大,∴m−1<0,解得m<1.

故选:B.【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k<0时,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大是解答此题的关键.6、B【分析】根据切线的性质可得:∠BAP=90°,然后根据三角形的内角和定理即可求出∠AOC,最后根据圆周角定理即可求出.【详解】解:∵直线与圆相切∴∠BAP=90°∵∴∠AOC=180°-∠BAP-∠P=48°∴故选B.【点睛】此题考查的是切线的性质和圆周角定理,掌握切线的性质和同弧所对的圆周角是圆心角的一半是解决此题的关键.7、A【分析】根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得.【详解】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC,∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∴,故选A.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.8、A【分析】根据旋转的性质可得AC=CD,∠CED=∠B,再判断出△ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CAD=45°,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∠CED=∠B=65°,∴△ACD是等腰直角三角形,∴∠CAD=45°,由三角形的外角性质得:.故选:A.【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.9、A【解析】一次函数当时,函数值总是随自变量的增大而增大,反比例函数当时,在每一个象限内,随自变量增大而增大.【详解】、该函数图象是直线,位于第一、三象限,随增大而增大,故本选项正确;、该函数图象是直线,位于第二、四象限,随增大而减小,故本选项错误;、该函数图象是双曲线,位于第一、三象限,在每一象限内,随增大而减小,故本选项错误;、该函数图象是双曲线,位于第二、四象限,在每一象限内,随增大而增大,故本选项错误.故选:.【点睛】本题考查了一次函数、反比例函数的增减性;熟练掌握一次函数、反比例函数的性质是关键.10、C【解析】由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱.故选C.二、填空题(每小题3分,共24分)11、1人【分析】根据频率分布直方图,求出在该次数学考试中成绩小于60分的频率,再求成绩小于60分的学生数.【详解】根据频率分布直方图,得在该次数学考试中成绩小于60分的频率是(0.002+0.006+0.012)×10=0.20∴在该次数学考试中成绩小于60分的学生数是3000×0.20=1.故答案为:1.【点睛】本题考查了频率分布直方图的应用问题,解题时应根据频率分布直方图提供的数据,求出频率,再求出学生数,是基础题.12、1【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【详解】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是1,故答案为1.【点睛】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.13、【分析】利用弧长公式列出关系式,把圆心角与弧长代入求出扇形的半径,即可确定出扇形的面积.【详解】设扇形所在圆的半径为r.∵扇形的圆心角为240°,所对的弧长为,∴l,解得:r=6,则扇形面积为rl=.故答案为:.【点睛】本题考查了扇形面积的计算,以及弧长公式,熟练掌握公式是解答本题的关键.14、1【分析】根据三角形两边之和大于第三边,两边之差小于第三边,结合一元二次方程相关知识进行解题即可.【详解】解:∵x2﹣17x+60=0,∴(x﹣1)(x﹣12)=0,解得:x1=1,x2=12,∵三角形的两边长分别是4和6,当x=12时,6+4<12,不能组成三角形.∴这个三角形的第三边长是1.故答案为:1.【点睛】本题考查了三角形的三边关系和一元二次方程的求解,熟悉三角形三边关系是解题关键.15、1【详解】若x1,x2是方程x2-2mx+m2-m-1=0的两个实数根;∴x1+x2=2m;x1·x2=m2−m−1,∵x1+x2=1-x1x2,∴2m=1-(m2−m−1),解得:m1=-2,m2=1.又∵一元二次方程有实数根时,△,∴,解得m≥-1,∴m=1.故答案为1.【点睛】(1)若方程的两根是,则,这一关系叫做一元二次方程根与系数的关系;(2)使用一元二次方程根与系数关系解题的前提条件是方程要有实数根,即各项系数的取值必须满足根的判别式△=.16、50°【解析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半得.【详解】解:∵⊙O是△ABC的外接圆,∠BOC=100°,∴∠BAC=∠BOC=×100°=50°.故答案为:50°.【点睛】本题考查圆周角定理,题目比较简单.17、此题答案不唯一,如AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD等.【分析】由在四边形ABCD中,AD=BC,AD∥BC,可判定四边形ABCD是平行四边形,然后根据一组邻边相等的平行四边形是菱形与对角线互相垂直的平行四边形是菱形,即可判定四边形ABCD是菱形,则可求得答案.【详解】解:如图,∵在四边形ABCD中,AD=BC,AD∥BC,

∴四边形ABCD是平行四边形,

∴当AB=BC或BC=CD或CD=AD或AB=AD时,四边形ABCD是菱形;

当AC⊥BD时,四边形ABCD是菱形.

故答案为:此题答案不唯一,如AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD等.【点睛】此题考查了菱形的判定定理.此题属于开放题,难度不大,注意掌握一组邻边相等的平行四边形是菱形与对角线互相垂直的平行四边形是菱形是解此题的关键.18、(答案不唯一)【分析】可设道路的宽为xm,将4块剩余矩形平移为一个长方形,长为(50-x)m,宽为(39-x)m.根据长方形面积公式即可列出方程.【详解】解:设道路的宽为xm,依题意有

(50-x)(39-x)=1.

故答案为:.【点睛】本题考查由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.解题关键是利用平移把4块试验田平移为一个长方形的长和宽.三、解答题(共66分)19、(1)详见解析;(2)详见解析;(3)N点的坐标为(0,﹣1);(4)D点坐标为(3,0).【解析】试题分析:(1)根据题中给出的损矩形的定义,从图找出只有一组对角是直角的四边形即可;(2)证明四边形BADM四个顶点到BD的中点距离相等即可;(3)利用同弧所对的圆周角相等可得∠MAD=∠MBD,进而得到OA=ON,即可求得点N的坐标;(4)根据正方形的性质及损矩形含有的直角,利用勾股定理求解.(1)四边形ABMD为损矩形;(2)取BD中点H,连结MH,AH∵四边形OABC,BDEF是正方形∴△ABD,△BDM都是直角三角形∴HA=BDHM=BD∴HA=HB=HM=HD=BD∴损矩形ABMD一定有外接圆(3)∵损矩形ABMD一定有外接圆⊙H∴MAD=MBD∵四边形BDEF是正方形∴MBD=45°∴MAD=45°∴OAN=45°∵OA=1∴ON=1∴N点的坐标为(0,-1)(4)延长AB交MG于点P,过点M作MQ⊥轴于点Q设MG=,则四边形APMQ为正方形∴PM=AQ=-1∴OG=MQ=-1∵△MBP≌△MDQ∴DQ=BP=CG=-2∴MN2ND2MD2∵四边形DMGN为损矩形∴∴∴=2.5或=1(舍去)∴OD=3∴D点坐标为(3,0).考点:本题考查的是确定圆的条件,正方形的性质点评:解答本题的关键是理解损矩形的只有一组对角是直角的性质,20、(1)图见解析,(2,1);(2)图见解析,【分析】(1)依次作出点A、B、C三点关于x轴的对称点A1、B1、C1,再顺次连接即可;根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数写出即可;(2)根据位似图形的性质作图即可;先求出经过一次变换(关于x轴对称)的点的坐标,再根据关于(1,1)为位似中心的点的坐标规律:横坐标=-2×(原横坐标-1)+1,纵坐标=-2×(原纵坐标-1)+1,代入化简即可.【详解】解:(1)如图所示,点的坐标为(2,1);(2)如图所示,点的坐标为,则其关于x轴对称的点的坐标是(m,-n),关于点位似后的坐标为(,),即两次变换后对应点的坐标为:.故答案为:.【点睛】本题考查了对称变换和位似变换的作图以及对应点的坐标规律探寻,属于常考题型,熟练掌握两种变换作图是解题的关键.21、2017年至2019年“双十一”交易额的年平均增长率为20%.【分析】设2017年至2019年“双十一”交易额的年平均增长率为x,根据该平台2017年及2019年的交易额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设2017年至2019年“双十一”交易额的年平均增长率为x,根据题意得:,解得:,(舍去).答:2017年至2019年“双十一”交易额的年平均增长率为20%.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.22、(1)详见解析;(2)【分析】(1)根据切线的性质得,由切线长定理可证,从而,然后根据等角的余角相等得到,从而根据等腰三角形的判定定理得到结论;(2)根据勾股定理计算出AC=8,再证明△ABC∽△ABD,利用相似比得到AD=,然后证明OF为△ABD的中位线,从而根据三角形中位线性质求出OF的长.【详解】(1)证明:∵是的直径,∴(直径所对的圆周角是),∴,∴,∵是的直径,于点,∴是的切线(经过半径外端且与半径垂直的直线是圆的切线),∵是的切线,∴(切线长定理),∴,∵,,∴,∴,∵.(2)由(1)可知,是直角三角形,在中,,,根据勾股定理求得,在和中,∴(两个角对应相等的两个三角形相似),∴,∴,∴,∵,,∴是的中位线,∴(三角形的中位线平行于第三边并且等于第三边的一半).【点睛】本题考查了切线的判定与性质,等腰三角形的判定与性质,勾股定理,相似三角形得判定与性质,余角的性质,以及三角形的中位线等知识.熟练掌握切线的判定与性质、相似三角形得判定与性质是解答本题的关键.23、(1)m=-12;(2)【分析】(1)根据矩形的性质求出点E的坐标,根据待定系数法即可得到答案;(2)根据勾股定理,可得AE的长,根据线段的和差,可得BF的长,可得点F的坐标,根据待定系数法,可得m的值,可得答案.【详解】(1)∵四边形ABCD是矩形,∴BC=AD=3,CD=AB=8,∠D=∠DCB=90°,∵点B坐标为(-6,0),E为CD中点,∴E(-3,4),∵函数图象过E点,∴m=-34=-12;(2)∵∠D=90°,AD=3,DE=CD=4,∴AE=5,∵AF-AE=2,∴AF=7,∴BF=1,设点F(x,1),则点E(x+3,4),∵函数图象过点E、F,∴x=4(x+3),解得x=-4,∴F(-4,1),∴m=-4,∴反比例函数的表达式是.【点睛】此题考查待定系数法求反比例函数的解析式,勾股定理,线段中点的特点,矩形的性质,(2)中可以设点E、F中一个点的坐标,表示出另一个点的坐标,由两点在同一个函数图象上可得到等式求出函数解析式,注意解题方法的积累.24、每件童装应降价元.【分析】设每件服装应降价x元,根据题意列出方程,即每件服装的利润×销售量=总盈利,再求解,把不符合题意的舍去.【详解】设每件服装应降价x元,由题意,得,解得,,为使顾客得到较多的实惠,应取x=1.故每件服装应降价1元.25、(1);(2).【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【详解】(1)解:一名游客经过此检票口时,选择A通道通过的概率=,故答案为:;(2)解:列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论