四川省泸县联考2022-2023学年九年级数学第一学期期末监测模拟试题含解析_第1页
四川省泸县联考2022-2023学年九年级数学第一学期期末监测模拟试题含解析_第2页
四川省泸县联考2022-2023学年九年级数学第一学期期末监测模拟试题含解析_第3页
四川省泸县联考2022-2023学年九年级数学第一学期期末监测模拟试题含解析_第4页
四川省泸县联考2022-2023学年九年级数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知⊙O半径为3,M为直线AB上一点,若MO=3,则直线AB与⊙O的位置关系为()A.相切 B.相交 C.相切或相离 D.相切或相交2.如图,二次函数的图象过点,下列说法:①;②;③若是抛物线上的两点,则;④当时,.其中正确的个数为()

A.4 B.3 C.2 D.13.如图,在△ABC中,∠BAC的平分线AD与∠ACB的平分线CE交于点O,下列说法正确的是()A.点O是△ABC的内切圆的圆心B.CE⊥ABC.△ABC的内切圆经过D,E两点D.AO=CO4.反比例函数的图象分布的象限是()A.第一、三象限 B.第二、四象限 C.第一象限 D.第二象限5.如图,已知的内接正方形边长为2,则的半径是()A.1 B.2 C. D.6.下列成语所描述的事件是必然事件的是()A.水涨船高 B.水中捞月 C.一箭双雕 D.拔苗助长7.如图,截的三条边所得的弦长相等,若,则的度数为()A. B. C. D.8.下列图形是中心对称图形的是()A. B. C. D.9.若,相似比为2,且的面积为12,则的面积为()A.3 B.6 C.24 D.4810.如图,矩形中,,,点为矩形内一动点,且满足,则线段的最小值为()A.5 B.1 C.2 D.3二、填空题(每小题3分,共24分)11.二次函数y=x2+4x+a图象上的最低点的横坐标为_____.12.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为(度).13.已知在平面直角坐标系中,点在第二象限,且到轴的距离为3,到轴的距离为4,则点的坐标为______.14.若反比例函数的图象经过点(2,﹣2),(m,1),则m=_____.15.已知m,n是方程的两个根,则代数式的值是__________.16.抛物线y=3(x+2)2+5的顶点坐标是_____.17.比较大小:________.(填“,或”)18.如图所示,矩形纸片中,,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作一个圆锥的侧面和底面,则的长为__________.

三、解答题(共66分)19.(10分)如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形,将矩形绕点按顺时针方向旋转,当落在CD上时停止转动,旋转后的矩形记为矩形,设旋转角为,求的值.20.(6分)为了提高教学质量,促进学生全面发展,某中学计划投入99000元购进一批多媒体设备和电脑显示屏,且准备购进电脑显示屏的数量是多媒体设备数量的6倍.现从商家了解到,一套多媒体设备和一个电脑显示屏的售价分别为3000元和600元.(1)求最多能购进多媒体设备多少套?(2)恰逢“双十一”活动,每套多媒体设备的售价下降,每个电脑显示屏的售价下降元,学校决定多媒体设备和电脑显示屏的数量在(1)中购进最多量的基础上都增加,实际投入资金与计划投入资金相同,求的值.21.(6分)如图,AB是⊙O的直径,,E是OB的中点,连接CE并延长到点F,使EF=CE.连接AF交⊙O于点D,连接BD,BF.(1)求证:直线BF是⊙O的切线;(2)若OB=2,求BD的长.22.(8分)文化是一个国家、一个民族的灵魂,近年来,央视推出《中国诗词大会》、《中国成语大会》、《朗读者》、《经曲咏流传》等一系列文化栏目.为了解学生对这些栏目的喜爱情况,某学校组织学生会成员随机抽取了部分学生进行调查,被调查的学生必须从《经曲咏流传》(记为A)、《中国诗词大会》(记为B)、《中国成语大会》(记为C)、《朗读者》(记为D)中选择自己最喜爱的一个栏目,也可以不选以上四类而写出一个自己最喜爱的其他文化栏目(这时记为E).根据调查结果绘制成如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:(1)在这项调查中,共调查了名学生;(2)最喜爱《朗读者》的学生有名;(3)扇形统计图中“B”所在扇形圆心角的度数为;(4)选择“E”的学生中有2名女生,其余为男生,现从选择“E”的学生中随机选出两名学生参加座谈,请直接写出:刚好选到一名男生和一名女生的概率为.23.(8分)如图,已知直线与轴交于点,与轴交于点,抛物线经过、两点并与轴的另一个交点为,且.(1)求抛物线的解析式;(2)点为直线上方对称轴右侧抛物线上一点,当的面积为时,求点的坐标;(3)在(2)的条件下,连接,作轴于,连接、,点为线段上一点,点为线段上一点,满足,过点作交轴于点,连接,当时,求的长.24.(8分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:月份(x)1月2月3月4月5月6月销售量(p)3.9万台4.0万台4.1万台4.2万台4.3万台4.4万台(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.25.(10分)解方程组:26.(10分)已知在△ABC中,∠A=∠B=30°.(1)尺规作图:在线段AB上找一点O,以O为圆心作圆,使⊙O经过A,C两点;(2)在(1)中所作的图中,求证:BC是⊙O的切线.

参考答案一、选择题(每小题3分,共30分)1、D【解析】试题解析“因为垂线段最短,所以圆心到直线的距离小于等于1.此时和半径1的大小不确定,则直线和圆相交、相切都有可能.故选D.点睛:直线和圆的位置关系与数量之间的联系:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.2、B【分析】根据二次函数的性质对各项进行判断即可.【详解】A.∵函数图象过点,∴对称轴为,可得,正确;B.∵,∴当,,正确;C.根据二次函数的对称性,的纵坐标等于的纵坐标,∵,所以,错误;D.由图象可得,当时,,正确;故答案为:B.【点睛】本题考查了二次函数的问题,掌握二次函数的图象以及性质是解题的关键.3、A【分析】由∠BAC的平分线AD与∠ACB的平分线CE交于点O,得出点O是△ABC的内心即可.【详解】解:∵△ABC中,∠BAC的平分线AD与∠ACB的平分线CE交于点O,∴点O是△ABC的内切圆的圆心;故选:A.【点睛】本题主要考察三角形的内切圆与内心,解题关键是熟练掌握三角形的内切圆性质.4、A【解析】先根据反比例函数的解析式判断出k的符号,再根据反比例函数的性质即可得出结论.【详解】解:∵反比例函数y=中,k=2>0,

∴反比例函数y=的图象分布在一、三象限.

故选:A.【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时,反比例函数图象的两个分支分别位于一三象限是解答此题的关键.5、C【分析】如图,连接BD,根据圆周角定理可得BD为⊙O的直径,利用勾股定理求出BD的长,进而可得⊙O的半径的长.【详解】如图,连接BD,∵四边形ABCD是正方形,边长为2,∴BC=CD=2,∠BCD=90°,∴BD==2,∵正方形ABCD是⊙O的内接四边形,∴BD是⊙O的直径,∴⊙O的半径是=,故选:C.【点睛】本题考查正方形的性质、圆周角定理及勾股定理,根据圆周角定理得出BD是直径是解题关键.6、A【解析】必然事件就是一定会发生的事件,依据定义即可解决【详解】A.水涨船高是必然事件,故正确;B.水中捞月,是不可能事件,故错误;C.一箭双雕是随机事件,故错误D.拔苗助长是不可能事件,故错误故选:A【点睛】此题考查随机事件,难度不大7、C【分析】先利用截的三条边所得的弦长相等,得出即是的内心,从而∠1=∠2,∠3=∠4,进一步求出的度数.【详解】解:过点分别作、、,垂足分别为、、,连接、、、、、、、,如图:∵,∴∴∴点是三条角平分线的交点,即三角形的内心∴,∵∴∴.故选:C【点睛】本题考查的是三角形的内心、角平分线的性质、全等三角形的判定和性质以及三角形内角和定理,比较简单.8、B【分析】根据中心对称图形的概念和各图的性质求解.【详解】A、是轴对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.【点睛】此题主要考查了中心对称图形的概念.要注意,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、A【解析】试题分析:∵△ABC∽△DEF,相似比为2,∴△ABC与△DEF的面积比为4,∵△ABC的面积为12,∴△DEF的面积为:12×=1.故选A.考点:相似三角形的性质.10、B【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【详解】如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=,CD=3,由勾股定理得,OD=5,∵PD≥,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键.二、填空题(每小题3分,共24分)11、﹣1.【解析】直接利用二次函数最值求法得出函数顶点式,进而得出答案.【详解】解:∵二次函数y=x1+4x+a=(x+1)1﹣4+a,∴二次函数图象上的最低点的横坐标为:﹣1.故答案为﹣1.【点睛】此题主要考查了二次函数的最值,正确得出二次函数顶点式是解题关键.12、55【分析】连接OA,OB,根据圆周角定理可得解.【详解】连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°.∴.∴∠C和∠AOB是同弧所对的圆周角和圆心角,∴∠C=∠AOB=55°.13、(-4,3)【分析】根据第二象限点的横坐标是负数,纵坐标是正数,点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值解答.【详解】解:点在第二象限,且到轴的距离为3,到轴的距离为4,点的横坐标为,纵坐标为3,点的坐标为.故答案为.【点睛】本题考查了点的坐标,熟记点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值是解题的关键.14、-1【分析】根据反比例函数图象上点的坐标特征解答.【详解】解:设反比例函数的图象为y=,把点(2,﹣2)代入得k=﹣1,则反比例函数的图象为y=﹣,把(m,1)代入得m=﹣1.故答案为﹣1.【点睛】本题考查反比例函数图象的性质,关键在于熟记性质.15、1【分析】由m,n是方程x2-x-2=0的两个根知m+n=1,m2-m=2,代入到原式=2(m2-m)-(m+n)计算可得.【详解】解:∵m,n是方程x2-x-2=0的两个根,

∴m+n=1,m2-m=2,

则原式=2(m2-m)-(m+n)

=2×2-1

=4-1

=1,

故答案为:1.【点睛】本题主要考查根与系数的关系,x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,,x1x2=.16、(﹣2,5)【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点睛】本题考查二次函数的性质,熟知二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,顶点坐标为(h,k),对称轴为x=h.17、<【分析】比较与的值即可.【详解】∵,,,∴,故答案为:.【点睛】此题考查三角函数值,熟记特殊角度的三角函数值是解题的关键.18、cm.【分析】设AB=xcm,则DE=(6-x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可.【详解】解:设AB=xcm,则DE=(6-x)cm,

根据题意,得解得x=1.

故选:1cm.【点睛】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.三、解答题(共66分)19、(1);(2)矩形移动的距离为时,矩形与△CBD重叠部分的面积是;(3)【解析】分析:(1)根据已知,由直角三角形的性质可知AB=2,从而求得AD,CD,利用中位线的性质可得EF,DF,利用三角函数可得GF,由矩形的面积公式可得结果;(2)首先利用分类讨论的思想,分析当矩形与△CBD重叠部分为三角形时(0<x≤),利用三角函数和三角形的面积公式可得结果;当矩形与△CBD重叠部分为直角梯形时(<x≤),列出方程解得x;(3)作H2Q⊥AB于Q,设DQ=m,则H2Q=m,又DG1=,H2G1=,利用勾股定理可得m,在Rt△QH2G1中,利用三角函数解得cosα.详解:(1)如图①,在中,∠ACB=90°,∠B=30°,AC=1,∴AB=2,又∵D是AB的中点,∴AD=1,.又∵EF是的中位线,∴,在中,AD=CD,∠A=60°,∴∠ADC=60°.在中,60°,∴矩形EFGH的面积.(2)如图②,设矩形移动的距离为则,当矩形与△CBD重叠部分为三角形时,则,,∴.(舍去).当矩形与△CBD重叠部分为直角梯形时,则,重叠部分的面积S=,∴.即矩形移动的距离为时,矩形与△CBD重叠部分的面积是.(3)如图③,作于.设,则,又,.在Rt△H2QG1中,,解之得(负的舍去).∴.点睛:本题主要考查了直角三角形的性质,中位线的性质和三角函数定义等,利用分类讨论的思想,构建直角三角形是解答此题的关键.20、(1)15套;(2)37.5【分析】(1)设购买A种设备x套,则购买B种设备6x套,根据总价=单价×数量结合计划投入99000元,即可得出关于x的一元一次不等式,解之取其最大值即可得出结论;(2)根据总价=单价×数量结合实际投入资金与计划投入资金相同,即可得出关于a的一元二次方程,解之取其正值即可得出结论.【详解】(1)设能购买多媒体设备套,则购买显示屏6x套,根据题意得:解得:答:最多能购买多媒体设备15套.(2)由题意得:设,则原方程为:整理得:解得:,(不合题意舍去)∴.答:的值是37.5.【点睛】本题考查了一元一次不等式的应用以及一元二次方程的应用,解题的关键是:(1)根据各数量之间的关系,找出关于x的一元一次不等式;(2)找准等量关系,正确列出一元二次方程.21、(1)证明见解析;(2)BD=.【分析】(1)连接OC,由已知可得∠BOC=90°,根据SAS证明△OCE≌△BFE,根据全等三角形的对应角相等可得∠OBF=∠COE=90°,继而可证明直线BF是⊙O的切线;(2)由(1)的全等可知BF=OC=2,利用勾股定理求出AF的长,然后由S△ABF=,即可求出BD=.【详解】解:(1)连接OC,∵AB是⊙O的直径,,∴∠BOC=90°,∵E是OB的中点,∴OE=BE,在△OCE和△BFE中,,∴△OCE≌△BFE(SAS),∴∠OBF=∠COE=90°,∴直线BF是⊙O的切线;(2)∵OB=OC=2,由(1)得:△OCE≌△BFE,∴BF=OC=2,∴AF=,∴S△ABF=,即4×2=2BD,∴BD=.【点睛】本题考查了切线的判定、全等三角形的判定与性质、勾股定理、三角形面积的不同表示方法,熟练掌握相关的性质与定理是解题的关键.22、(1)150;(2)75;(3)36°;(4).【分析】(1)由A栏目人数及其所占百分比可得总人数;(2)总人数乘以D栏目所占百分比求得其人数;(3)总人数减去其他栏目人数求得B的人数,再用360°乘以B栏目所占的百分比即可;(4)列表得出所有等可能结果,然后利用概率的计算公式即可求解.【详解】(1)共调查的总数是:30÷20%=150(名).故答案为:150;(2)最喜爱《朗读者》的学生有150×50%=75(名).故答案为:75;(3)扇形统计图中“B”所在扇形圆心角的度数为360°36°.故答案为:36°;(4)记选择“E”的同学中的2名女生分别为N1,N2,4名男生分别为M1,M2,M3,M4,列表如下:∵共有30种等可能的结果,其中,刚好选到一名男生和一名女生的有16种情况,∴刚好选到一名男生和一名女生的概率为.故答案为:.【点睛】本题考查了读频数分布直方图的能力和利用统计图获取信息的能力以及求随机事件的概率;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23、(3);(3)R(3,3);(3)3或.【分析】(3)求出A、B、C的坐标,把A、B的坐标代入抛物线解析式,解方程组即可得出结论;(3)设R(t,).作RK⊥y轴于K,RW⊥x轴于W,连接OR.根据计算即可;(3)在RH上截取RM=OA,连接CM、AM,AM交PE于G,作QF⊥OB于H.分两种情况讨论:①点E在F的左边;②点E在F的右边.【详解】(3)当x=0时y=3,∴C(0,3),∴OC=3.∵OC=3OA,∴OA=3,∴A(-3,0).当y=0时x=4,∴B(4,0).把A、B坐标代入得解得:,∴抛物线的解析式为.(3)设R(t,).作RK⊥y轴于K,RW⊥x轴于W,连接OR.∵∵,∴,(舍去),,∴R(3,3).(3)在RH上截取RM=OA,连接CM、AM,AM交PE于G,作QF⊥OB于H.分两种情况讨论:①当点E在F的左边时,如图3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ,∴AM∥EQ,∴∠MAH=∠QEF.∵∠QFE=∠MHA=90°,∴△QEF∽△MAH,∴.∵OA=3,OH=3,MH=RH-RM=3-3=3,∴AH=AO+OH=4,∴EF=3QF.设CP=m,∴QH=CP=m.∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=3m,∴EH=3m.∵ACPE为平行四边形,∴AE=CP=m.∵EH=AH-AE=4-m,∴3m=4-m,∴m=3,∴CP=3.②当点E在F的右边时,设AM交QE于N.如图3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ=45°,∴∠ENG=∠ENA=90°.∵∠EQF+∠QEF=90°,∠EAN+∠QEF=90°,∴∠EQF=∠MAB.∵∠QFE=∠AHM=90°,∴△QEF∽△AMH,∴,∴QF=3EF.设CP=m,∴QH=CP=m.∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=m,∴EH=m.∵ACPE为平行四边形,∴AE=CP=m.∵EH=AH-AE=4-m,∴4-m=m,∴m=,∴CP=.综上所述:CP的值为3或.【点睛】本题是二次函数的综合题目,涉及了相似三角形的判定与性质、平行四边形的性质,解答本题需要我们熟练各个知识点的内容,注意要分类讨论.24、(1)p=0.1x+3.8;(2)该品牌手机在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论