四川省甘孜州道孚一中学2022-2023学年九年级数学第一学期期末检测试题含解析_第1页
四川省甘孜州道孚一中学2022-2023学年九年级数学第一学期期末检测试题含解析_第2页
四川省甘孜州道孚一中学2022-2023学年九年级数学第一学期期末检测试题含解析_第3页
四川省甘孜州道孚一中学2022-2023学年九年级数学第一学期期末检测试题含解析_第4页
四川省甘孜州道孚一中学2022-2023学年九年级数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,□ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①EO⊥AC;②S△AOD=4S△OCF;③AC:BD=:7;④FB2=OF•DF.其中正确的是()A.①②④ B.①③④ C.②③④ D.①③2.在1、2、3三个数中任取两个,组成一个两位数,则组成的两位数是奇数的概率为()A. B. C. D.3.已知k1<0<k2,则函数y=k1x和的图象大致是()A. B. C. D.4.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD,CE,若∠CBD=32°,则∠BEC的大小为()A.64° B.120° C.122° D.128°5.计算的结果等于()A.-6 B.6 C.-9 D.96.如图所示几何体的左视图正确的是()A. B. C. D.7.一个小正方体沿着斜面前进了10米,横截面如图所示,已知,此时小正方体上的点距离地面的高度升高了()A.5米 B.米 C.米 D.米8.正十边形的外角和为()A.180° B.360° C.720° D.1440°9.下列事件中是必然事件的是()A.﹣a是负数 B.两个相似图形是位似图形C.随机抛掷一枚质地均匀的硬币,落地后正面朝上 D.平移后的图形与原来的图形对应线段相等10.圆锥形纸帽的底面直径是18cm,母线长为27cm,则它的侧面展开图的圆心角为()A.60° B.90° C.120° D.150°二、填空题(每小题3分,共24分)11.已知△ABC的内角满足=__________度.12.如图,一段抛物线:记为,它与轴交于两点,;将绕旋转得到,交轴于;将绕旋转得到,交轴于;如此进行下去,直至得到,若点在第段抛物线上,则___________.13.如图,反比例函数的图象经过点,过作轴垂线,垂足是是轴上任意一点,则的面积是_________.14.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则BE:BC的值为_________.15.在双曲线的每个分支上,函数值y随自变量x的增大而增大,则实数m的取值范围是________.16.现有5张正面分别标有数字0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使得关于的一元二次方程有实数根,且关于的分式方程有整数解的概率为.17.如图,在△ABC中,AC:BC:AB=3:4:5,⊙O沿着△ABC的内部边缘滚动一圈,若⊙O的半径为1,且圆心O运动的路径长为18,则△ABC的周长为_____.18.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于__________________.三、解答题(共66分)19.(10分)阅读下面的材料:小明同学遇到这样一个问题,如图1,AB=AE,∠ABC=∠EAD,AD=mAC,点P在线段BC上,∠ADE=∠ADP+∠ACB,求的值.小明研究发现,作∠BAM=∠AED,交BC于点M,通过构造全等三角形,将线段BC转化为用含AD的式子表示出来,从而求得的值(如图2).(1)小明构造的全等三角形是:_________≌________;(2)请你将小明的研究过程补充完整,并求出的值.(3)参考小明思考问题的方法,解决问题:如图3,若将原题中“AB=AE”改为“AB=kAE”,“点P在线段BC上”改为“点P在线段BC的延长线上”,其它条件不变,若∠ACB=2α,求:的值(结果请用含α,k,m的式子表示).20.(6分)如图,已知二次函数的图象与轴交于点、,与轴交于点,直线交二次函数图象的对称轴于点,若点C为的中点.(1)求的值;(2)若二次函数图象上有一点,使得,求点的坐标;(3)对于(2)中的点,在二次函数图象上是否存在点,使得∽?若存在,求出点的坐标;若不存在,请说明理由.21.(6分)已知:如图,在平行四边形ABCD中,过点C分别作AD、AB的垂线,交边AD、AB延长线于点E、F.(1)求证:;(2)联结AC,如果,求证:.22.(8分)如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:DE是⊙O的切线.(2)若BF=2,BD=2,求⊙O的半径.23.(8分)在Rt△ABC中,∠C=90°,a=6,b=.解这个三角形.24.(8分)如图所示,在平面直角坐标系中,抛物线的顶点坐标为,并与轴交于点,点是对称轴与轴的交点.(1)求抛物线的解析式;(2)如图①所示,是抛物线上的一个动点,且位于第一象限,连结BP、AP,求的面积的最大值;(3)如图②所示,在对称轴的右侧作交抛物线于点,求出点的坐标;并探究:在轴上是否存在点,使?若存在,求点的坐标;若不存在,请说明理由.25.(10分)已知AD为⊙O的直径,BC为⊙O的切线,切点为M,分别过A,D两点作BC的垂线,垂足分别为B,C,AD的延长线与BC相交于点E.(1)求证:△ABM∽△MCD;(2)若AD=8,AB=5,求ME的长.26.(10分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被哦感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(3)轮(为正整数)感染后,被感染的电脑有________台.

参考答案一、选择题(每小题3分,共30分)1、B【分析】①正确.只要证明EC=EA=BC,推出∠ACB=90°,再利用三角形中位线定理即可判断.

②错误.想办法证明BF=2OF,推出S△BOC=3S△OCF即可判断.

③正确.设BC=BE=EC=a,求出AC,BD即可判断.

④正确.求出BF,OF,DF(用a表示),通过计算证明即可.【详解】解:∵四边形ABCD是平行四边形,

∴CD∥AB,OD=OB,OA=OC,

∴∠DCB+∠ABC=180°,

∵∠ABC=60°,

∴∠DCB=120°,

∵EC平分∠DCB,

∴∠ECB=∠DCB=60°,

∴∠EBC=∠BCE=∠CEB=60°,

∴△ECB是等边三角形,

∴EB=BC,

∵AB=2BC,

∴EA=EB=EC,

∴∠ACB=90°,

∵OA=OC,EA=EB,

∴OE∥BC,

∴∠AOE=∠ACB=90°,

∴EO⊥AC,故①正确,

∵OE∥BC,

∴△OEF∽△BCF,

∴,

∴OF=OB,

∴S△AOD=S△BOC=3S△OCF,故②错误,

设BC=BE=EC=a,则AB=2a,AC=a,OD=OB=a,

∴BD=a,

∴AC:BD=a:a=:7,故③正确,

∵OF=OB=a,

∴BF=a,

∴BF2=a2,OF•DF=a•a2,

∴BF2=OF•DF,故④正确,

故选:B.【点睛】此题考查相似三角形的判定和性质,平行四边形的性质,角平分线的定义,解直角三角形,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.2、C【分析】列举出所有情况,看末位是1和3的情况占所有情况的多少即可.【详解】依题意画树状图:∴共有6种情况,是奇数的有4种情况,所以组成的两位数是偶数的概率=,故选:C.【点睛】本题考查了树状图法求概率以及概率公式;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是不放回实验.3、D【解析】试题分析::∵k1<0<k2,∴直线过二、四象限,并且经过原点;双曲线位于一、三象限.故选D.考点:1.反比例函数的图象;2.正比例函数的图象.4、C【分析】根据圆周角定理可求∠CAD=32°,再根据三角形内心的定义可求∠BAC,再根据三角形内角和定理和三角形内心的定义可求∠EBC+∠ECB,再根据三角形内角和定理可求∠BEC的度数.【详解】在⊙O中,∵∠CBD=32°,

∴∠CAD=32°,

∵点E是△ABC的内心,

∴∠BAC=64°,

∴∠EBC+∠ECB=(180°-64°)÷2=58°,

∴∠BEC=180°-58°=122°.

故选:C.【点睛】本题考查了三角形的内心,圆周角定理,三角形内角和定理,关键是得到∠EBC+∠ECB的度数.5、D【分析】根据有理数乘方运算的法则计算即可.【详解】解:,故选:D.【点睛】本题考查了有理数的乘方,掌握运算法则是解题的关键.6、A【分析】左视图是从物体的左面看得到的视图,找到从左面看所得到的图形即可.【详解】该几何体的左视图为:是一个矩形,且矩形中有两条横向的虚线.故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图7、B【分析】根据题意,用未知数设出斜面的铅直高度和水平宽度,再运用勾股定理列方程求解.【详解】解:Rt△ABC中,AB=2BC,

设BC=x,则AC=2x,

根据勾股定理可得,

x2+(2x)2=102,

解得x=或x=(负值舍去),即小正方体上的点N距离地面AB的高度升高了米,

故选:B.【点睛】此题主要考查了解直角三角形的应用-坡度坡角问题,解题的关键是熟练运用勾股定理的知识,此题比较简单.8、B【分析】根据多边的外角和定理进行选择.【详解】解:因为任意多边形的外角和都等于360°,

所以正十边形的外角和等于360°,.

故选B.【点睛】本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.9、D【解析】分析:根据必然事件指在一定条件下,一定发生的事件,可得答案.详解:A.

−a是非正数,是随机事件,故A错误;B.两个相似图形是位似图形是随机事件,故B错误;C.随机抛掷一枚质地均匀的硬币,落地后正面朝上是随机事件,故C错误;D.平移后的图形与原来对应线段相等是必然事件,故D正确;故选D.点睛:考查随机事件,解决本题的关键是正确理解随机事件,不可能事件,必然事件的概念.10、C【分析】根据圆锥侧面展开图的面积公式以及展开图是扇形,扇形半径等于圆锥母线长度,再利用扇形面积求出圆心角.【详解】解:根据圆锥侧面展开图的面公式为:πrl=π×9×27=243π,

∵展开图是扇形,扇形半径等于圆锥母线长度,∴扇形面积为:解得:n=1.

故选:C.【点睛】此题主要考查了圆锥侧面积公式的应用以及与展开图各部分对应情况,得出圆锥侧面展开图等于扇形面积是解决问题的关键.二、填空题(每小题3分,共24分)11、75【解析】由题意得:,,∴tanA=,cosB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案为75.12、-1【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果.【详解】∵y=−x(x−2)(0≤x≤2),∴配方可得y=−(x−1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,−1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,−1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);C6顶点坐标为(11,−1),A6(12,0);∴m=−1.故答案为:-1.【点睛】本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标,学会从一般到特殊的探究方法,属于中考常考题型.13、【分析】连接OA,根据反比例函数中k的几何意义可得,再根据等底同高的三角形的面积相等即可得出结论【详解】解:连接OA,∵反比例函数的图象经过点,∴;∵过作轴垂线,垂足是;∴AB//OC∴和等底同高;∴;故答案为:【点睛】本题考查了反比例函数比例系数的几何意义、等底同高的三角形的面积,熟练掌握反比例函数的性质是解题的关键14、1:4【解析】由S△BDE:S△CDE=1:3,得到

,于是得到

.【详解】解:两个三角形同高,底边之比等于面积比.故答案为【点睛】本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键.15、m<﹣1【分析】根据在双曲线的每个分支上,函数值y随自变量x的增大而增大,可以得到m+1<0,从而可以求得m的取值范围.【详解】∵在双曲线的每个分支上,函数值y随自变量x的增大而增大,∴m+1<0,解得,m<﹣1,故答案为m<﹣1.【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质,解题的关键是明确题意,利用反比例函数的性质解答.16、【详解】首先根据一元二次方程有实数解可得:4-4(a-2)≥0可得:a≤3,则符合条件的a有0,1,2,3四个;解分式方程可得:x=,∵x≠2,则a≠1,a≠2,综上所述,则满足条件的a为0和3,则P=.考点:(1)、概率;(2)、分式方程的解.17、4【分析】如图,首先利用勾股定理判定△ABC是直角三角形,由题意得圆心O所能达到的区域是△DEG,且与△ABC三边相切,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ、FM、FN,根据切线性质可得:AG=AH,PC=CQ,BN=BM,DG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,继而则有矩形DEPG、矩形EQNF、矩形DFMH,从而可知DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°,根据题意可知四边形CPEQ是边长为1的正方形,根据相似三角形的判定可得△DEF∽△ACB,根据相似三角形的性质可知:DE∶EF∶FD=AC∶CB∶BA=3∶4∶1,进而根据圆心O运动的路径长列出方程,求解算出DE、EF、FD的长,根据矩形的性质可得:GP、QN、MH的长,根据切线长定理可设:AG=AH=x,BN=BM=y,根据线段的和差表示出AC、BC、AB的长,进而根据AC∶CB∶BA=3∶4∶1列出比例式,继而求出x、y的值,进而即可求解△ABC的周长.【详解】∵AC∶CB∶BA=3∶4∶1,设AC=3a,CB=4a,BA=1a(a>0)∴∴△ABC是直角三角形,设⊙O沿着△ABC的内部边缘滚动一圈,如图所示,连接DE、EF、DF,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ、FM、FN,根据切线性质可得:AG=AH,PC=CQ,BN=BMDG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,∴DG∥EP,EQ∥FN,FM∥DH,∵⊙O的半径为1∴DG=DH=PE=QE=FN=FM=1,则有矩形DEPG、矩形EQNF、矩形DFMH,∴DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°又∵∠CPE=∠CQE=90°,PE=QE=1∴四边形CPEQ是正方形,∴PC=PE=EQ=CQ=1,∵⊙O的半径为1,且圆心O运动的路径长为18,∴DE+EF+DF=18,∵DE∥AC,DF∥AB,EF∥BC,∴∠DEF=∠ACB,∠DFE=∠ABC,∴△DEF∽△ABC,∴DE:EF:DF=AC:BC:AB=3:4:1,设DE=3k(k>0),则EF=4k,DF=1k,∵DE+EF+DF=18,∴3k+4k+1k=18,解得k=,∴DE=3k=,EF=4k=6,DF=1k=,根据切线长定理,设AG=AH=x,BN=BM=y,则AC=AG+GP+CP=x++1=x+1.1,BC=CQ+QN+BN=1+6+y=y+2,AB=AH+HM+BM=x++y=x+y+2.1,∵AC:BC:AB=3:4:1,∴(x+1.1):(y+2):(x+y+2.1)=3:4:1,解得x=2,y=3,∴AC=2.1,BC=10,AB=3.1,∴AC+BC+AB=4.所以△ABC的周长为4.故答案为4.【点睛】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆心O的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点.18、【解析】试题分析:∵∠ADC=∠BDE,∠C=∠E,∴△ADC∽△BDE,∴,∵AD=4,BC=8,BD:DC=5:3,∴BD=5,DC=3,∴DE=.故选B.考点:相似三角形的判定与性质.三、解答题(共66分)19、(1);(2);(3).【分析】(1)根据已知条件直接猜想得出结果;(2)过点作交于点,易证,再根据结合已知条件得出结果;(3)过点作交于点,过点作,得出,根据相似三角形的性质及已知条件得出,进而求解.【详解】(1)解:;(2)过点作交于点.在中和,,,,∴.∴,.∴.∵,,∴.∵.∵,∴.∴.∴.(3)解:过点作交于点.在中和,,,∴.∴,.∴,.∵,∴.∵,,∴.∴.过点作.∴,,.在中,,∴.∴.∴.【点睛】本题考查了三角形全等的性质及判定,相似三角形的判定与性质,解题的关键是熟练掌握这些性质并能灵活运用.20、(1);(2)或;(3)不存在,理由见解析.【分析】(1)设对称轴与轴交于点,如图1,易求出抛物线的对称轴,可得OE的长,然后根据平行线分线段成比例定理可得OA的长,进而可得点A的坐标,再把点A的坐标代入抛物线解析式即可求出m的值;(2)设点Q的横坐标为n,当点在轴上方时,过点Q作QH⊥x轴于点H,利用可得关于n的方程,解方程即可求出n的值,进而可得点Q坐标;当点在轴下方时,注意到,所以点与点关于直线对称,由此可得点Q坐标;(3)当点为x轴上方的点时,若存在点P,可先求出直线BQ的解析式,由BP⊥BQ可求得直线BP的解析式,然后联立直线BP和抛物线的解析式即可求出点P的坐标,再计算此时两个三角形的两组对应边是否成比例即可判断点P是否满足条件;当点Q取另外一种情况的坐标时,再按照同样的方法计算判断即可.【详解】解:(1)设抛物线的对称轴与轴交于点,如图1,∴轴,∴,∵抛物线的对称轴是直线,∴OE=1,∴,∴∴将点代入函数表达式得:,∴;(2)设,①点在轴上方时,,如图2,过点Q作QH⊥x轴于点H,∵,∴,解得:或(舍),∴;②点在轴下方时,∵OA=1,OC=3,∴,∵,∴点与点关于直线对称,∴;(3)①当点为时,若存在点P,使∽,则∠PBQ=∠COA=90°,由B(3,0)、Q可得,直线BQ的解析式为:,所以直线PB的解析式为:,联立方程组:,解得:,,∴,∵,,∴,∴不存在;②当点为时,如图4,由B(3,0)、Q可得,直线BQ的解析式为:,所以直线PB的解析式为:,联立方程组:,解得:,,∴,∵,,∴,∴不存在.综上所述,不存在满足条件的点,使∽.【点睛】本题考查了平行线分线段成比例定理、二次函数图象上点的坐标特征、一元二次方程的解法、相似三角形的判定和性质、锐角三角函数和两个函数的交点等知识,综合性强、具有相当的难度,熟练掌握上述知识、灵活应用分类和数形结合的数学思想是解题的关键.21、(1)见解析;(2)见解析【分析】(1)证明四边形是平行四边形即可解决问题.(2)由,,推出,可得,又与等高,推出,可得结论.【详解】解:(1)四边形是平行四边形,,,,,,,,,,,四边形是平行四边形,,,,.(2)如图:,,,又,,,又∵,.【点睛】本题考查了相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.22、(1)见解析;(2).【分析】(1)证明△DAF≌△DCE,可得∠DFA=∠DEC,证出∠ADE=∠DEC=90°,即OD⊥DE,DE是⊙O的切线.

(2)在Rt△ADF和Rt△BDF中,可得AD2-(AD-BF)2=DB2-BF2,解方程可求出AD的长即可.【详解】(1)证明:如图1,连接DF,∵四边形ABCD为菱形,∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,∵BF=BE,∴AB﹣BF=BC﹣BE,即AF=CE,∴△DAF≌△DCE(SAS),∴∠DFA=∠DEC,∵AD是⊙O的直径,∴∠DFA=90°,∴∠DEC=90°∵AD∥BC,∴∠ADE=∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图2,∵AD是⊙O的直径,∴∠DFA=90°,∴∠DFB=90°,在Rt△ADF和Rt△BDF中,∵DF2=AD2﹣AF2,DF2=BD2﹣BF2,∴AD2﹣AF2=DB2﹣BF2,∴AD2﹣(AD﹣BF)2=DB2﹣BF2,∴∴AD=1.∴⊙O的半径为.【点睛】此题考查圆的综合,圆周角定理,菱形的性质,切线的判定,三角形全等的性质和判定,勾股定理等知识,解题关键是根据勾股定理列方程解决问题.23、c=12,∠A=30°,∠B=60°.【分析】先用勾股定理求出c,再根据边的比得到角的度数.【详解】在Rt△ABC中,∠C=90°,a=6,b=,∴,∵,,∴∠A=30°,∠B=60°.【点睛】此题考查解直角三角形,即求出三角形未知的边和角,用三角函数求角度时能熟记各角的三角函数值是解题的关键.24、(1);(2)当时,最大值为;(3)存在,点坐标为,理由见解析【分析】(1)利用待定系数法可求出二次函数的解析式;(2)求三角形面积的最值,先求出三角形面积的函数式.从图形上看S△PAB=S△BPO+S△APO-S△AOB,设P求出关于n的函数式,从而求S△PAB的最大值.(3)求点D的坐标,设D,过D做DG垂直于AC于G,构造直角三角形,利用勾股定理或三角函数值来求t的值即得D的坐标;探究在y轴上是否存在点,使?根据以上条件和结论可知∠CAD=120°,是∠CQD的2倍,联想到同弧所对的圆周角和圆心角,所以以A为圆心,AO长为半径做圆交y轴与点Q,若能求出这样的点,就存在Q点.【详解】解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论