陕西省西安大学区六校联考2022-2023学年数学九上期末统考模拟试题含解析_第1页
陕西省西安大学区六校联考2022-2023学年数学九上期末统考模拟试题含解析_第2页
陕西省西安大学区六校联考2022-2023学年数学九上期末统考模拟试题含解析_第3页
陕西省西安大学区六校联考2022-2023学年数学九上期末统考模拟试题含解析_第4页
陕西省西安大学区六校联考2022-2023学年数学九上期末统考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.把抛物线向下平移2个单位,再向右平移1个单位,所得到的抛物线是A. B. C. D.2.在平面直角坐标系中,函数的图象经过变换后得到的图象,则这个变换可以是()A.向左平移2个单位 B.向右平移2个单位C.向上平移2个单位 D.向下平移2个单位3.已知点A(m2﹣5,2m+3)在第三象限角平分线上,则m=()A.4 B.﹣2 C.4或﹣2 D.﹣14.如图工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间线段最短 B.两点确定一条直线C.三角形具有稳定性 D.长方形的四个角都是直角5.如图,△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ADC的度数是()A.80° B.160° C.100° D.40°6.已知,则下列比例式成立的是()A. B. C. D.7.如图,在平面直角坐标系中,点、在函数的图象上,过点分别作轴、轴的垂线,垂足为、;过点分别作轴、轴的垂线,垂足为、.交于点,随着的增大,四边形的面积()A.增大 B.减小 C.先减小后增大 D.先增大后减小8.一个高为3cm的圆锥的底面周长为8πcm,则这个圆锥的母线长度为()A.3cm B.4cm C.5cm D.5πcm9.在下列图形中,是中心对称图形而不是轴对称图形的是()A.圆 B.等边三角形 C.梯形 D.平行四边形10.顺次连接菱形各边中点得到的四边形一定是()A.菱形 B.矩形 C.正方形 D.不确定二、填空题(每小题3分,共24分)11.已知线段、满足,则________.12.二次函数图象的顶点坐标为________.13.如图,的直径长为6,点是直径上一点,且,过点作弦,则弦长为______.14.已知实数m,n满足,,且,则=.15.已知反比例函数y=(k≠0)的图象经过点(-3,m),则m=______。16.如图,菱形ABCD中,∠B=120°,AB=2,将图中的菱形ABCD绕点A沿逆时针方向旋转,得菱形AB′C′D′1,若∠BAD′=110°,在旋转的过程中,点C经过的路线长为____.17.反比例函数的图象在一、三象限,则应满足_________________.18.如图,是的中线,点在延长线上,交的延长线于点,若,则___________.三、解答题(共66分)19.(10分)我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.如图,在△ABC中,AB>AC,点D,E分别在AB,AC上,设CD,BE相交于点O,如果∠A是锐角,∠DCB=∠EBC=∠A.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.20.(6分)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次.21.(6分)如图,已知在正方形ABCD中,M是BC边上一定点,连接AM,请用尺规作图法,在AM上求作一点P,使得△DPA∽△ABM(不写做法保留作图痕迹)22.(8分)如图,在正方形ABCD中,等边△AEF的顶点E、F分别在BC和CD上.(1)、求证:△ABE≌△ADF;(2)、若等边△AEF的周长为6,求正方形ABCD的边长.23.(8分)如图,已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.试说明:(1)△ABP≌△AEQ;(2)EF=BF24.(8分)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,若AO=10,则⊙O的半径长为_______.25.(10分)某商品的进价为每件20元,售价为每件30元,毎个月可买出180件:如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,毎件商品的售价为多少元时,每个月的销售利润将达到1920元?26.(10分)为推进“传统文化进校园”活动,我市某中学举行了“走进经典”征文比赛,赛后整理参赛学生的成绩,将学生的成绩分为四个等级,并将结果绘制成不完整的条形统计图和扇形统计图.请根据统计图解答下列问题:(1)参加征文比赛的学生共有人;(2)补全条形统计图;(3)在扇形统计图中,表示等级的扇形的圆心角为__图中;(4)学校决定从本次比赛获得等级的学生中选出两名去参加市征文比赛,已知等级中有男生一名,女生两名,请用列表或画树状图的方法求出所选两名学生恰好是一名男生和一名女生的概率.

参考答案一、选择题(每小题3分,共30分)1、D【解析】根据平移概念,图形平移变换,图形上每一点移动规律都是一样的,也可用抛物线顶点移动,根据点的坐标是平面直角坐标系中的平移规律:“左加右减,上加下减.”,顶点(-1,0)→(0,-2).因此,所得到的抛物线是.故选D.2、A【分析】将两个二次函数均化为顶点式,根据两顶点坐标特征判断平移方向和平移距离.【详解】,顶点坐标为,,顶点坐标为,所以函数的图象向左平移2个单位后得到的图象.故选:A【点睛】本题考查二次函数图象的特征,根据顶点坐标确定变换方式是解答此题的关键.3、B【分析】根据第三象限角平分线上的点的特征是横纵坐标相等进行解答.【详解】因为,解得:,,当时,,不符合题意,应舍去.故选:B.【点睛】第三象限点的坐标特征是负负,第三象限角平分线上的点的特征是横纵坐标相等,掌握其特征是解本题的关键.4、C【分析】根据三角形的稳定性,可直接选择.【详解】加上EF后,原图形中具有△AEF了,故这种做法根据的是三角形的稳定性.

故选:C.5、C【分析】根据圆周角定理以及圆内接四边形的性质即可解决问题;【详解】解:∵∠AOC=2∠B,∠AOC=160°,

∴∠B=80°,

∵∠ADC+∠B=180°,

∴∠ADC=100°,

故选:C.【点睛】本题考查圆周角定理、圆内接四边形的性质等知识,解题的关键是熟练掌握基本知识.6、C【分析】依据比例的性质,将各选项变形即可得到正确结论.【详解】解:A.由可得,2y=3x,不合题意;B.由可得,2y=3x,不合题意;C.由可得,3y=2x,符合题意;D.由可得,3x=2y,不合题意;故选:C.【点睛】本题主要考查了比例的性质,解决问题的关键是掌握:内项之积等于外项之积.7、A【分析】首先利用a和b表示出AC和CQ的长,则四边形ACQE的面积即可利用a、b表示,然后根据函数的性质判断.【详解】解:AC=a−2,CQ=b,则S四边形ACQE=AC•CQ=(a−2)b=ab−2b.∵、在函数的图象上,∴ab=k=10(常数).∴S四边形ACQE=AC•CQ=10−2b,∵当a>2时,b随a的增大而减小,∴S四边形ACQE=10−2b随a的增大而增大.故选:A.【点睛】本题考查了反比例函数的性质以及矩形的面积的计算,利用b表示出四边形ACQE的面积是关键.8、C【分析】由底面圆的周长公式算出底面半径,圆锥的正视图是以母线长为腰,底面圆直径为底的等腰三角形,高、底面半径和母线长三边构成直角三角形,再用勾股定理算出母线长即可.【详解】解:由圆的周长公式得=4由勾股定理=5故选:C.【点睛】本题考查了圆锥的周长公式,圆锥的正视图勾股定理等知识点.9、D【解析】解:选项A、是中心对称图形,也是轴对称图形,故此选项错误;选项B、不是中心对称图形,是轴对称图形,故此选项错误;选项C、不是中心对称图形,是轴对称图形,故此选项错误;选项D、是中心对称图形,不是轴对称图形,故此选项正确;故选D.10、B【分析】菱形的对角线互相垂直,连接个边中点可得到四边形的特征.【详解】解:是矩形.

证明:如图,∵四边形ABCD是菱形,

∴AC⊥BD,

∵E,F,G,H是中点,

∴EF∥BD,FG∥AC,

∴EF⊥FG,

同理:FG⊥HG,GH⊥EH,HE⊥EF,

∴四边形EFGH是矩形.

故选:B.【点睛】本题考查了菱形的性质与判定定理,矩形的判定定理以及三角形的中位线定理.二、填空题(每小题3分,共24分)11、【解析】此题考查比例知识,答案12、【解析】二次函数(a≠0)的顶点坐标是(h,k).【详解】解:根据二次函数的顶点式方程知,该函数的顶点坐标是:(1,2).故答案为:(1,2).【点睛】本题考查了二次函数的性质和二次函数的三种形式,解答该题时,需熟悉二次函数的顶点式方程中的h,k所表示的意义.13、【分析】连接OA,先根据垂径定理得出AE=AB,在Rt△AOE中,根据勾股定理求出AE的长,进而可得出结论.【详解】连接AO,∵CD是⊙O的直径,AB是弦,AB⊥CD于点E,∴AE=AB.∵CD=6,∴OC=3,∵CE=1,∴OE=2,在Rt△AOE中,∵OA=3,OE=2,∴AE=,∴AB=2AE=.故答案为:.【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.14、.【解析】试题分析:由时,得到m,n是方程的两个不等的根,根据根与系数的关系进行求解.试题解析:∵时,则m,n是方程3x2﹣6x﹣5=0的两个不相等的根,∴,.∴原式===,故答案为.考点:根与系数的关系.15、-4【分析】将(-3,m)代入y=即可求出答案.【详解】将(-3,m)代入y=中,得-3m=12,∴m=-4,故答案为:-4.【点睛】此题考查反比例函数的解析式,熟练计算即可正确解答.16、π.【分析】连接AC、AC′,作BM⊥AC于M,由菱形的性质得出∠BAC=∠D′AC′=30°,由含30°角的直角三角形的性质得出BM=AB=1,由勾股定理求出AM=BM=,得出AC=2AM=2,求出∠CAC′=50°,再由弧长公式即可得出结果.【详解】解:连接AC、AC′,作BM⊥AC于M,如图所示:∵四边形ABCD是菱形,∠B=120°,∴∠BAC=∠D′AC′=30°,∴BM=AB=1,∴AM=BM=,∴AC=2AM=2,∵∠BAD′=110°,∴∠CAC′=110°-30°-30°=50°,∴点C经过的路线长==π故答案为:π【点睛】本题考查了菱形的性质、含30°角的直角三角形的性质、等腰三角形的性质、勾股定理、弧长公式;熟练掌握菱形的性质,由勾股定理和等腰三角形的性质求出AC的长是解决问题的关键.17、【分析】根据条件反比例函数的图象在一、三象限,可知k+2>0,即可求出k的取值.【详解】解:∵反比例函数的图象在一、三象限,∴>0,∴k+2>0,∴故答案为:【点睛】难题考察的是反比例函数的性质,图象在一三象限时k>0,图象在二四象限时k<0.18、5【分析】过D点作DH∥AE交EF于H点,证△BDH∽△BCE,△FDH∽△FAE,根据对应边成比例即可求解.【详解】过D点作DH∥AE交EF于H点,∴∠BDH=∠BCE,∠BHD=∠BEC,∴△BDH∽△BCE同理可证:△FDH∽△FAE∵AD是△ABC的中线∴BD=DC∴又∴∴∴故答案为:5【点睛】本题考查的是相似三角形,找到两队相似三角形之间的联系是关键.三、解答题(共66分)19、存在等对边四边形,是四边形DBCE,见解析【分析】作CG⊥BE于G点,作BF⊥CD交CD延长线于F点,证明△BCF≌△CBG,得到BF=CG,再证∠BDF=∠BEC,得到△BDF≌△CEG,故而BD=CE,即四边形DBCE是等对边四边形.【详解】解:此时存在等对边四边形,是四边形DBCE.如图,作CG⊥BE于G点,作BF⊥CD交CD延长线于F点.∵∠DCB=∠EBC=∠A,BC为公共边,∴△BCF≌△CBG,∴BF=CG,∵∠BDF=∠ABE+∠EBC+∠DCB,∠BEC=∠ABE+∠A,∴∠BDF=∠BEC,∴△BDF≌△CEG,∴BD=CE∴四边形DBCE是等对边四边形.【点睛】此题考查新定义形式下三角形全等的判定,由题意及图形分析得到等对边四边形是四边形DBCE,应证明线段BD=CE,只能作辅助线通过证明三角形全等得到结论,继而得解此题.20、(1)20%(2)8640万人次【分析】(1)设年平均增长率为x.根据题意2010年公民出境旅游总人数为5000(1+x)万人次,2011年公民出境旅游总人数5000(1+x)2万人次.根据题意得方程求解.(2)2012年我国公民出境旅游总人数约1(1+x)万人次.【详解】解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得5000(1+x)2=1.解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为1(1+x)=1×120%=8640万人次.答:预测2012年我国公民出境旅游总人数约8640万人次.21、作图见解析.【解析】根据尺规作图的方法过点D作AM的垂线即可得【详解】如图所示,点P即为所求作的点.【点睛】本题考查了尺规作图——作垂线,熟练掌握作图的方法是解题的关键.22、(1)证明见解析;(2).【解析】试题分析:(1)根据四边形ABCD是正方形,得出AB=AD,∠B=∠D=90°,再根据△AEF是等边三角形,得出AE=AF,最后根据HL即可证出△ABE≌△ADF;(2)根据等边△AEF的周长是6,得出AE=EF=AF的长,再根据(1)的证明得出CE=CF,∠C=90°,从而得出△ECF是等腰直角三角形,再根据勾股定理得出EC的值,设BE=x,则AB=x+,在Rt△ABE中,AB2+BE2=AE2,求出x的值,即可得出正方形ABCD的边长.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,∵AB=AD,AE=AF∴Rt△ABE≌Rt△ADF;(2)∵等边△AEF的周长是6,∴AE=EF=AF=2,又∵Rt△ABE≌Rt△ADF,∴BE=DF,∴CE=CF,∠C=90°,即△ECF是等腰直角三角形,由勾股定理得CE2+CF2=EF2,∴EC=,设BE=x,则AB=x+,在Rt△ABE中,AB2+BE2=AE2,即(x+)2+x2=4,解得x1=或x2=(舍去),∴AB=+=,∴正方形ABCD的边长为.考点:1.正方形的性质;2.全等三角形的判定与性质;23、1.【解析】(1)根据等边三角形性质得出AB=AE,AP=AQ,∠ABE=∠BAE=∠PAQ=60°,求出∠BAP=∠EAQ,根据SAS证△BAP≌△EAQ,推出∠AEQ=∠ABC=90°;

(1)根据等边三角形性质求出∠ABE=∠AEB=60°,根据∠ABC=90°=∠AEQ求出∠BEF=∠EBF=30°,即可得出答案.(1)解:△BEC是等腰三角形,理由是:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ECB,∵CE平分∠DEB,∴∠DEC=∠BEC,∴∠BEC=∠ECB,∴BE=BC,∴△BEC是等腰三角形.(1)解:∵四边形ABCD是矩形,∴∠A=90°,∵∠ABE=45°,∴∠AEB=45°=∠ABE,∴AE=AB=,由勾股定理得:BE=,即BC=BE=1.“点睛”本题考查了等边三角形的性质,全等三角形的性质和判定,等腰三角形的性质和判定的应用.24、2【解析】分析:如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得,再将OA、BD、BH的长度代入即可求得OF的长度.详解:如图所示:作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=320,∴DH=16,在Rt△ADH中,AH=∴HB=AB-AH=8,在Rt△BDH中,BD=,设⊙O与AB相切于F,连接OF.

∵AD=AB,OA平分∠DAB,

∴AE⊥BD,

∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,

∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,

∴△AOF∽△DBH,∴,即∴OF=2.故答案是:2.点睛:考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.25、毎件商品的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论