版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.已知二次函数的与的部分对应值如表:下列结论:①抛物线的开口向上;②抛物线的对称轴为直线;③当时,;④抛物线与轴的两个交点间的距离是;⑤若是抛物线上两点,则;⑥.其中正确的个数是()A. B. C. D.2.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1 B.直线x=﹣2 C.直线x=﹣1 D.直线x=﹣44.如图,在平面直角坐标系中,菱形的顶点与原点重合,顶点落在轴的正半轴上,对角线、交于点,点、恰好都在反比例函数的图象上,则的值为()A. B. C.2 D.5.如图,AD是半圆O的直径,AD=12,B,C是半圆O上两点.若,则图中阴影部分的面积是()A.6π B.12π C.18π D.24π6.如图所示的两个四边形相似,则α的度数是()A.60° B.75° C.87° D.120°7.﹣3﹣(﹣2)的值是()A.﹣1 B.1 C.5 D.﹣58.下列说法正确的是()A.“任意画一个三角形,其内角和为”是随机事件B.某种彩票的中奖率是,说明每买100张彩票,一定有1张中奖C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.投掷一枚质地均匀的硬币100次,正面向上的次数一定是50次9.已知圆内接四边形ABCD中,∠A:∠B:∠C=1:2:3,则∠D的大小是()A.45° B.60° C.90° D.135°10.方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.只有一个实数根11.二次函数的图象如图,则一次函数的图象经过()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限12.已知正多边形的一个内角是135°,则这个正多边形的边数是()A.3 B.4 C.6 D.8二、填空题(每题4分,共24分)13.请你写出一个二次函数,其图象满足条件:①开口向下;②与轴的交点坐标为.此二次函数的解析式可以是______________14.已知圆锥的侧面积为20πcm2,母线长为5cm,则圆锥底面半径为______cm.15.已知,.且,设,则的取值范围是______.16.有4根细木棒,它们的长度分别是2cm、4cm、6cm、8cm.从中任取3根恰好能搭成一个三角形的概率是_____.17.如图,,分别是边,上的点,,若,,,则______.18.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,求选取点A为坐标原点时的抛物线解析式是_______.三、解答题(共78分)19.(8分)京剧脸谱是京剧艺术独特的表现形式.京剧表演中,经常用脸谱象征人物的性格,品质,甚至角色和命运.如红脸代表忠心耿直,黑脸代表强悍勇猛.现有三张不透明的卡片,其中两张卡片的正面图案为“红脸”,另外一张卡片的正面图案为“黑脸”,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图或列表的方法,求抽出的两张卡片上的图案都是“红脸”的概率.(图案为“红脸”的两张卡片分别记为A1、A2,图案为“黑脸”的卡片记为B)20.(8分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.(1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b的图象经过一、二、四象限的概率.21.(8分)解方程:(1)x1﹣1x﹣3=0;(1)3x1﹣6x+1=1.22.(10分)如图,在△ABC中,点D在BC边上,BD=AD=AC,E为CD的中点.若∠B=35°,求∠CAE度数.23.(10分)如图,某科技物展览大厅有A、B两个入口,C、D、E三个出口.小昀任选一个入口进入展览大厅,参观结束后任选一个出口离开.(1)若小昀已进入展览大厅,求他选择从出口C离开的概率.(2)求小昀选择从入口A进入,从出口E离开的概率.(请用列表或画树状图求解)24.(10分)如图,是的直径,直线与相切于点.过点作的垂线,垂足为,线段与相交于点.(1)求证:是的平分线;(2)若,求的长.25.(12分)如图,已知和中,,,,,;(1)请说明的理由;(2)可以经过图形的变换得到,请你描述这个变换;(3)求的度数.26.已知:中,.(1)求作:的外接圆;(要求:尺规作图,保留作图痕迹,不写作法)(2)若的外接圆的圆心到边的距离为4,,求的面积.
参考答案一、选择题(每题4分,共48分)1、B【分析】先利用待定系数法求出抛物线解析式,则可对①进行判断;求出抛物线的对称轴则可对②进行判断;利用抛物线与x轴的两个交点可对③④进行判断;根据二次函数的增减性可对⑤进行判断;根据a、b、c的具体数值可对⑥进行判断.【详解】解:由表格可知:抛物线与x轴的交点坐标为(0,0),(4,0),∴设抛物线解析式为y=ax(x﹣4),把(﹣1,5)代入得:5=a×(﹣1)×(﹣1﹣4),解得a=1,∴抛物线解析式为y=x2﹣4x,所以①正确;∵(0,0)与(4,0)关于抛物线的对称轴对称,∴抛物线的对称轴为直线x=2,所以②正确;∵抛物线的开口向上,且与x轴交于点(0,0)、(4,0),∴当0<x<4时,y<0,所以③错误;抛物线与x轴的两个交点(0,0)与(4,0)间的距离是4,所以④正确;若A(x1,2),B(x2,3)是抛物线上两点,则,所以x1与x2的大小不能确定,所以⑤错误;∵a=1,b=-4,c=0,∴,所以⑥错误.综上,正确的个数有3个,故选:B.【点睛】本题考查了二次函数的性质、待定系数法求二次函数的解析式、抛物线与x轴的交点以及二次函数与不等式等知识,属于常见题型,熟练掌握二次函数的性质是解题的关键.2、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.此图案既不是轴对称图形,也不是中心对称图形;
B.此图案既不是轴对称图形,也不是中心对称图形;
C.此图案既是轴对称图形,又是中心对称图形;
D.此图案仅是轴对称图形;
故选:C.【点睛】本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.3、C【解析】∵一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),∴﹣2a+b=0,即b=2a.∴抛物线y=ax2+bx的对称轴为直线.故选C.4、A【解析】利用菱形的性质,根据正切定义即可得到答案.【详解】解:设,,∵点为菱形对角线的交点,∴,,,∴,把代入得,∴,∵四边形为菱形,∴,∴,解得,∴,在中,,∴.故选A.【点睛】本题考查了反比例函数图象上点的坐标特征,解题关键在于运用菱形的性质.5、A【分析】根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.【详解】∵,∴∠AOB=∠BOC=∠COD=60°.∴阴影部分面积=.故答案为A.【点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°.6、C【解析】根据相似多边形性质:对应角相等.【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.7、A【解析】利用有理数的减法的运算法则进行计算即可得出答案.【详解】﹣3﹣(﹣2)=﹣3+2=﹣1,故选A.【点睛】本题主要考查了有理数的减法运算,正确掌握运算法则是解题关键.8、C【分析】根据必然事件,随机事件,可能事件的概念解题即可.【详解】解:A.“任意画一个三角形,其内角和为”是不可能事件,错误,B.某种彩票的中奖率是,说明每买100张彩票,一定有1张中奖,可能事件不等于必然事件,错误,C.“篮球队员在罚球线上投篮一次,投中”为随机事件,正确,D.投掷一枚质地均匀的硬币100次,正面向上的次数可能是50次,错误,故选C.【点睛】本题考查了必然事件,随机事件,可能事件的概念,属于简单题,熟悉概念是解题关键.9、C【分析】根据圆内接四边形对角互补,结合已知条件可得∠A:∠B:∠C:∠D=1:2:3:2,∠B+∠D=180°,由此即可求得∠D的度数.【详解】∵四边形ABCD为圆的内接四边形,∠A:∠B:∠C=1:2:3,∴∠A:∠B:∠C:∠D=1:2:3:2,而∠B+∠D=180°,∴∠D=×180°=90°.故选C.【点睛】本题考查了圆内接四边形的性质,熟练运用圆内接四边形对角互补的性质是解决问题的关键.10、C【分析】把a=1,b=-1,c=3代入△=b2-4ac进行计算,然后根据计算结果判断方程根的情况.【详解】∵a=1,b=-1,c=3,∴△=b2-4ac=(-1)2-4×1×3=-11<0,所以方程没有实数根.故选C.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.11、C【解析】∵抛物线的顶点在第四象限,∴﹣>1,<1.∴<1,∴一次函数的图象经过二、三、四象限.故选C.12、D【分析】根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数=,∴这个正多边形的边数是1.故选:D.【点睛】本题考查了正多边形的内角和与外角和的知识,知道正多边形的外角之和为360°是解题关键.二、填空题(每题4分,共24分)13、【分析】根据二次函数图像和性质得a0,c=3,即可设出解析式.【详解】解:根据题意可知a0,c=3,故二次函数解析式可以是【点睛】本题考查了二次函数的性质,属于简单题,熟悉概念是解题关键.14、1【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:=8π,再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,可得=1cm.故答案为:1.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.15、【分析】先根据已知得出n=1-m,将其代入y中,得出y关于m的二次函数即可得出y的范围【详解】解:∵∴n=1-m,∴∵,∴,∴当m=时,y有最小值,当m=0时,y=1当m=1时,y=1∴故答案为:【点睛】本题考查了二次函数的最值问题,熟练掌握二次函数的性质是解题的关键16、【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8,所以恰好能搭成一个三角形的概率=.故答案为.【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数.17、1【分析】证明△ADE∽△ACB,根据相似三角形的性质列出比例式,计算即可.【详解】解:∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB,∴,即,解得,AE=1,故答案为:1.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.18、【分析】以A为坐标原点建立坐标系,求出其它两点的坐标,用待定系数法求解析式即可.【详解】解:以A为原点建立坐标系,则A(0,0),B(12,0),C(6,4)设y=a(x-h)2+k,∵C为顶点,∴y=a(x-6)2+4,把A(0,0)代入上式,36a+4=0,解得:,∴;故答案为:.【点睛】本题主要考查了待定系数法求二次函数解析式,恰当的选取坐标原点,求出各点的坐标是解决问题的关键.三、解答题(共78分)19、【分析】根据题意画出树状图,求出所有的情况数和两次抽取的卡片上都是“红脸”的情况数,再根据概率公式计算即可.【详解】画树状图为:由树状图可知,所有可能出现的结果共有9种,其中两次抽取的卡片上都是“红脸”的结果有4种,所以P(两张都是“红脸”),答:抽出的两张卡片上的图案都是“红脸”的概率是.【点睛】本题考查了概率的求法.用到的知识点为数状图和概率,概率=所求情况数与总情况数之比,关键是根据题意画出树状图.20、(1)答案见解析;(2).【分析】(1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.(2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率.【详解】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b的图象经过一、二、四象限时,k<0,b>0,情况有4种,则P==.21、(1)x1=3,x1=﹣1;(1)x1=,x1=【分析】(1)利用因式分解法求解可得;
(1)整理为一般式,再利用公式法求解可得.【详解】解:(1)原方程可以变形为(x﹣3)(x+1)=0,∴x﹣3=0,x+1=0,∴x1=3,x1=﹣1;(1)方程整理为一般式为3x1﹣6x﹣1=0,∵a=3,b=﹣6,c=﹣1,∴=36﹣4×3×(﹣1)=48>0,则,即.【点睛】本题考查了解一元二次方程,应熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.22、∠CAE=20°.【分析】根据等边对等角求出∠BAD,从而求出∠ADC,在等腰三角形ADC中,由三线合一求出∠CAE.【详解】∵BD=AD,∴∠BAD=∠B=35°,∴∠ADE=∠BAD+∠B=70°,∵AD=AC,∴∠C=∠ADE=70°,∵AD=AC,AE平分DC,∴AE⊥EC,(三线合一).∴∠EAC=90°-∠C=20°.【点睛】本题的解题关键是掌握等边对等角和三线合一.23、(1);(2)【分析】(1)用列举法即可求得;(2)画树状图(见解析)得出所有可能的结果,再分析求解即可.【详解】(1)小昀选择出口离开时的所有可能有3种:C、D、E,每一种可能出现的可能性都相等,因此他选择从出口C离开的概率为:;(2)根据题意画树状图如下:由树状图可以看出,所有可能出现的结果共有6种,即(AC)、(AD)、(AE)、(BC)、(BD)、(BE),这些结果出现的可能性相等所以小昀选择从入口A进入,出口E离开(即AE)的概率为.【点睛】本题考查了用列举法求概率,列出事件所有可能的结果是解题关键.24、(1)见解析;(2)【分析】(1)连接OC,可证得OC∥AD,根据平行线性质及等腰三角形性质,可得∠DAC=∠CAO,即得AC平分∠DAB;(2)连接,连接交于点,通过构造直角三角形,利用勾
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 迎小年贺团圆传统节日小年介绍课件
- 2024民办高等教育行业趋势分析报告
- 2024-2025学年年七年级数学人教版下册专题整合复习卷26.3 实际问题与二次函数(1)(含答案)-
- 寿险的意义与功用课件
- 《公顷和平方千米》教案
- 新版《税法1》考试复习题库大全-上(单选题)
- 2024年房地产经纪人《房地产经纪业务操作》核心备考题库(含典型题、重点题)
- 辽宁省大连市王府高级中学2024-2025学年高二上学期第二学段考试数学试题(含答案)
- 珍惜时间高效学习
- 有效沟通技巧
- 地铁司机岗位招聘笔试题与参考答案
- 2024年电工(高级技师)考前必刷必练题库500题(含真题、必会题)
- 2024秋期国家开放大学专科《统计学原理》一平台在线形考(形成性考核一至三)试题及答案
- 《工业产品销售单位落实质量安全主体责任监督管理规定》(60题)
- 世界技能大赛集训工作方案
- 实验室安全准入考试题库答案
- 2024年新人教版七年级上册地理课件 第一章综合复习
- 2输变电工程施工质量验收统一表式(变电工程土建专业)-2024年版
- 2025年高考语文复习备考复习策略讲座
- 心电图并发症预防及处理
- 四年级科学上册(教科版)第7课让弦发出高低不同的声音(教学设计)
评论
0/150
提交评论