版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知圆内接四边形ABCD中,∠A:∠B:∠C=1:2:3,则∠D的大小是()A.45° B.60° C.90° D.135°2.方程x2+x-12=0的两个根为()A.x1=-2,x2=6 B.x1=-6,x2=2 C.x1=-3,x2=4 D.x1=-4,x2=33.二次函数的图象如右图所示,若,,则()A., B., C., D.,4.二次函数的图象如图,若一元二次方程有实数解,则k的最小值为A. B. C. D.05.如图,菱形ABCD与等边△AEF的边长相等,且E、F分别在BC、CD,则∠BAD的度数是()A.80° B.90° C.100° D.120°6.如图为二次函数y=ax2+bx+c的图象,在下列说法中①ac>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3;③a+b+c<0;④当x>1时,y随x的增大而增大,正确的是()A.①③ B.②④ C.①②④ D.②③④7.如果,那么的值为()A. B. C. D.8.一元二次方程x²-4x-1=0配方可化为()A.(x+2)²=3 B.(x+2)²=5 C.(x-2)²=3 D.(x-2)²=59.按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形
②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2
④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.410.已知反比例函数图像上三个点的坐标分别是,能正确反映的大小关系的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,、、、是上四个点,连接、,过作交圆周于点,连接,若,则的度数为___________.12.在△ABC中,∠C=90°,若AC=6,BC=8,则△ABC外接圆半径为________;13.如图,在中,,,点在上,且,则______.______.14.如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是_____.15.计算:﹣tan60°=_____.16.将抛物线向上平移一个单位后,又沿x轴折叠,得新的抛物线,那么新的抛物线的表达式是_____.17.有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,则小红第二次取出的数字能够整除第一次取出的数字的概率为________.18.如图,反比例函数的图象与矩形相较于两点,若是的中点,,则反比例函数的表达式为__________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D(0,4),B(6,0).若反比例函数(x>0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.设直线EF的解析式为y2=k2x+b.(1)求反比例函数和直线EF的解析式;(温馨提示:平面上有任意两点M(x1,y1)、N(x2,y2),它们连线的中点P的坐标为())(2)求△OEF的面积;(3)请结合图象直接写出不等式k2x-b﹣>0的解集.20.(6分)关于的方程有实根.(1)求的取值范围;(2)设方程的两实根分别为且,求的值.21.(6分)如图,AB为⊙O的直径,AC是弦,D为线段AB延长线上一点,过C,D作射线DP,若∠D=2∠CAD=45º.(1)证明:DP是⊙O的切线.(2)若CD=3,求BD的长.22.(8分)如图,在平面直角坐标系中,的三个顶点的坐标分别为点、、.(1)的外接圆圆心的坐标为.(2)①以点为位似中心,在网格区域内画出,使得与位似,且点与点对应,位似比为2:1,②点坐标为.(3)的面积为个平方单位.23.(8分)用适当的方法解方程:(1)(2).24.(8分)若为实数,关于的方程的两个非负实数根为、,求代数式的最大值.25.(10分)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查将他们的得分按优秀、良好、合格、不合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.请根据图表信息,解答下列问题:本次调查随机抽取了____名学生:表中;补全条形统计图:若全校有名学生,请你估计该校掌握垃圾分类知识达到“优秀"和“良好”等级的学生共有多少人26.(10分)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE最大.①求点P的坐标和PE的最大值.②在直线PD上是否存在点M,使点M在以AB为直径的圆上;若存在,求出点M的坐标,若不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据圆内接四边形对角互补,结合已知条件可得∠A:∠B:∠C:∠D=1:2:3:2,∠B+∠D=180°,由此即可求得∠D的度数.【详解】∵四边形ABCD为圆的内接四边形,∠A:∠B:∠C=1:2:3,∴∠A:∠B:∠C:∠D=1:2:3:2,而∠B+∠D=180°,∴∠D=×180°=90°.故选C.【点睛】本题考查了圆内接四边形的性质,熟练运用圆内接四边形对角互补的性质是解决问题的关键.2、D【解析】试题分析:将x2+x﹣12分解因式成(x+4)(x﹣1),解x+4=0或x﹣1=0即可得出结论.x2+x﹣12=(x+4)(x﹣1)=0,则x+4=0,或x﹣1=0,解得:x1=﹣4,x2=1.考点:解一元二次方程-因式分解法3、A【分析】由于当x=2.5时,,再根据对称轴得出b=-2a,即可得出5a+4c>0,因此可以判断M的符号;由于当x=1时,y=a+b+c>0,因此可以判断N的符号;【详解】解:∵当x=2.5时,y=,∴25a+10b+4c>0,,∴b=-2a,
∴25a-20a+4c>0,即5a+4c>0,
∴M>0,
∵当x=1时,y=a+b+c>0,
∴N>0,
故选:A.【点睛】此题主要考查了二次函数图象与系数的关系,解题的关键是注意数形结合思想的应用.4、A【解析】∵一元二次方程ax2+bx+k=0有实数解,∴可以理解为y=ax2+bx和y=−k有交点,由图可得,−k≤4,∴k≥−4,∴k的最小值为−4.故选A.5、C【解析】试题分析:根据菱形的性质推出∠B=∠D,AD∥BC,根据平行线的性质得出∠DAB+∠B=180°,根据等边三角形的性质得出∠AEF=∠AFE=60°,AF=AD,根据等边对等角得出∠B=∠AEB,∠D=∠AFD,设∠BAE=∠FAD=x,根据三角形的内角和定理得出方程x+2(180°﹣60°﹣2x)=180°,求出方程的解即可求出答案.解:∵四边形ABCD是菱形,∴∠B=∠D,AD∥BC,∴∠DAB+∠B=180°,∵△AEF是等边三角形,AE=AB,∴∠AEF=∠AFE=60°,AF=AD,∴∠B=∠AEB,∠D=∠AFD,由三角形的内角和定理得:∠BAE=∠FAD,设∠BAE=∠FAD=x,则∠D=∠AFD=180°﹣∠EAF﹣(∠BAE+∠FAD)=180°﹣60°﹣2x,∵∠FAD+∠D+∠AFD=180°,∴x+2(180°﹣60°﹣2x)=180°,解得:x=20°,∴∠BAD=2×20°+60°=100°,故选C.考点:菱形的性质;全等三角形的判定与性质;等边三角形的性质.6、D【分析】①依据抛物线开口方向可确定a的符号、与y轴交点确定c的符号进而确定ac的符号;②由抛物线与x轴交点的坐标可得出一元二次方程ax2+bx+c=0的根;③由当x=1时y<0,可得出a+b+c<0;④观察函数图象并计算出对称轴的位置,即可得出当x>1时,y随x的增大而增大.【详解】①由图可知:,,,故①错误;②由抛物线与轴的交点的横坐标为与,方程的根是,,故②正确;③由图可知:时,,,故③正确;④由图象可知:对称轴为:,时,随着的增大而增大,故④正确;故选D.【点睛】本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四条说法的正误是解题的关键.7、C【分析】由已知条件2x=3y,根据比例的性质,即可求得答案.【详解】解:∵2x=3y,∴=.故选C.【点睛】本题考查比例的性质,本题考查比较简单,解题的关键是注意比例变形与比例的性质.8、D【分析】移项,配方,即可得出选项.【详解】x2−4x−1=0,x2−4x=1,x2−4x+4=1+4,(x−2)2=5,故选:D.【点睛】本题考查了解一元二次方程的应用,能正确配方是解此题的关键.9、C【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.10、B【分析】根据反比例函数关系式,把-2、1、2代入分别求出,然后比较大小即可.【详解】将A、B、C三点横坐标带入函数解析式可得,∵,∴.故选:B.【点睛】本题考查反比例函数图象上点的坐标,正确利用函数表达式求点的坐标是解题关键.二、填空题(每小题3分,共24分)11、【分析】由,利用圆的内接四边形求进而求解,利用垂径定理与等腰三角形的三线合一可得答案.【详解】解:四边形是的内接四边形,故答案为:【点睛】本题考查的是垂径定理,同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半,圆的内接四边形的性质,等腰三角形的三线合一,掌握以上知识是解题的关键.12、5【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的中点,∵∠C=90°,AC=6,BC=8,∴,∴△ABC外接圆半径为5.故答案为:5.【点睛】此题考查勾股定理的运用、三角形外接圆的确定.根据圆周角定理,直角三角形的直角所对的边为直径,即可确定圆的位置及大小.13、【分析】在Rt△ABC中,根据,可求得AC的长;在Rt△ACD中,设CD=x,则AD=BD=8-x,根据勾股定理列方程求出x值,从而求得结果.【详解】解:在Rt△ABC中,∵,∴AC=BC=1.设CD=x,则BD=8-x=AD,在Rt△ACD中,由勾股定理得,x2+12=(8-x)2,解得x=2.∴CD=2,AD=5,∴.故答案为:1;.【点睛】本题考查解直角三角形,掌握相关概念是解题的关键.14、2【分析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(1,1),B(4,1).再过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,根据反比例函数系数k的几何意义得出S△AOC=S△BOD=×4=1.根据S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面积公式求出S梯形ABDC=(BD+AC)•CD=(1+1)×1=2,从而得出S△AOB=2.【详解】解:∵A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是1和4,
∴当x=1时,y=1,即A(1,1),
当x=4时,y=1,即B(4,1).
如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S△AOC=S△BOD=×4=1.
∵S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,
∴S△AOB=S梯形ABDC,
∵S梯形ABDC=(BD+AC)•CD=(1+1)×1=2,
∴S△AOB=2.
故答案是:2.【点睛】主要考查了反比例函数y=中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.15、2.【分析】先运用二次根式的性质和特殊角的三角函数进行化简,然后再进行计算即可.【详解】解:﹣tan60°=3﹣=2.故答案为:2.【点睛】本题考查了基本运算,解答的关键是灵活运用二次根式的性质对二次根式进行化简、牢记特殊角的三角函数值.16、【分析】先确定抛物线y=x2﹣2的二次项系数a=1,顶点坐标为(0,﹣2),向上平移一个单位后(0,﹣1),翻折后二次项系数a=-1,顶点坐标变为(0,1),然后根据顶点式写出新抛物线的解析式.【详解】抛物线y=x2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向上平移一个单位所得对应点的坐标为(0,﹣1),点(0,﹣1)关于x轴的对称点的坐标为(0,1),因为新抛物线的开口向下,所以新抛物线的解析式为y=﹣x2+1.故答案为:y=﹣x2+1.【点睛】此题考查抛物线的平移规律:左加右减,上加下减,翻折口开口方向改变,但是大小没变,因此二次项系数改变的只是符号,正确掌握平移的规律并运用解题是关键.17、【分析】画树状图展示所有16种等可能的结果数,再找出小红第二次取出的数字能够整除第一次取出的数字的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有16种等可能的结果数,其中小红第二次取出的数字能够整除第一次取出的数字的结果数为7,所以小红第二次取出的数字能够整除第一次取出的数字的概率=.故答案为.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.18、【分析】设D(a,),则B纵坐标也为,代入反比例函数的y=,即可求得E的横坐标,则根据三角形的面积公式即可求得k的值.【详解】解:设D(a,),则B纵坐标也为,∵D是AB中点,∴点E横坐标为2a,代入解析式得到纵坐标:,∵BE=BCEC=,∴E为BC的中点,S△BDE=,∴k=1.∴反比例函数的表达式为;故答案是:.【点睛】本题考查了反比例函数的性质,以及三角形的面积公式,正确表示出BE的长度是关键.三、解答题(共66分)19、(1)(2)(3)x<-6或-1.5<x<1【分析】(1)根据点A是OC的中点,可得A(3,2),可得反比例函数解析式为y1=,根据E(,4),F(6,1),运用待定系数法即可得到直线EF的解析式为y=-x+5;(2)过点E作EG⊥OB于G,根据点E,F都在反比例函数y1=的图象上,可得S△EOG=S△OBF,再根据S△EOF=S梯形EFBG进行计算即可;(3)根据点E,F关于原点对称的点的坐标分别为(-1.5,-4),(-6,-1),可得不等式k2x-b->1的解集为:x<-6或-1.5<x<1.【详解】(1)∵D(1,4),B(6,1),∴C(6,4),∵点A是OC的中点,∴A(3,2),把A(3,2)代入反比例函数y1=,可得k1=6,∴反比例函数解析式为y1=,把x=6代入y1=,可得y=1,则F(6,1),把y=4代入y1=,可得x=,则E(,4),把E(,4),F(6,1)代入y2=k2x+b,可得,解得,∴直线EF的解析式为y=-x+5;(2)如图,过点E作EG⊥OB于G,∵点E,F都在反比例函数y1=的图象上,∴S△EOG=S△OBF,∴S△EOF=S梯形EFBG=(1+4)×=;(3)由图象可得,点E,F关于原点对称的点的坐标分别为(-1.5,-4),(-6,-1),∴由图象可得,不等式k2x-b->1的解集为:x<-6或-1.5<x<1.【点睛】本题主要考查了反比例函数与一次函数交点问题以及矩形性质的运用,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.解题时注意运用数形结合思想得到不等式的解集.20、(1)m≤1;(2)m=.【分析】(1)根据一元二次方程方程有实根的条件是列出不等式求解即可;(2)根据根与系数的关系可得,再根据,求出的值,最后求出m的值即可.【详解】解:根据题意得(2)由根与系数的关系可得【点睛】本题考查了一元二次方程有根的条件及根与系数的关系,根据题意列出等式或不等式是解题的关键.21、(1)见解析;(2)【分析】(1)连接OC,根据等腰三角形的性质,三角形的内角和与外角的性质,证得∠OCD=90°,即可证得DP是⊙O的切线;(2)根据等腰直角三角形的性质得OB=OC=CD=3,而∠OCD=90º,最后利用勾股定理进行计算即可.【详解】(1)证明:连接OC,
∵OA=OC,
∴∠CAD=∠ACO,
∴∠COD=2∠CAD=45°,
∵∠D=2∠CAD=45º,∴∠OCD=180°-45°-45°=90°,
∴OC⊥CD,∴DP是⊙O的切线;(2)由(1)可知∠CDO=∠COD=45º∴OB=OC=CD=3∵∠OCD=90º∴,∴BD=OD-OB=【点睛】本题考查了切线的性质,等腰三角形的判定与性质,勾股定理,熟练掌握切线的性质是解题的关键.22、(1);(2)①见解析;②;(3)4【分析】(1)由于三角形的外心是三边垂直平分线的交点,故只要利用网格特点作出AB与AC的垂直平分线,其交点即为圆心M;(2)根据位似图形的性质画图即可;由位似图形的性质即可求得点D坐标;(3)利用(2)题的图形,根据三角形的面积公式求解即可.【详解】解:(1)如图1,点M是AB与AC的垂直平分线的交点,即为△ABC的外接圆圆心,其坐标是(2,2);故答案为:(2,2);(2)①如图2所示;②点坐标为(4,6);故答案为:(4,6);(3)的面积=个平方单位.故答案为:4.【点睛】本题考查了三角形外心的性质、坐标系中位似图形的作图和三角形的面积等知识,属于常考题型,熟练掌握基本知识是解题关键.23、(1);;(2)=,=1.【分析】(1)用公式法求解;(2)用因式分解法求解.【详解】解:(1)a=2,b=3,c=-5,△=32-1×2×(-5)=19>0,所以x1===1,x1===;(2)[(x+3)+(1-2x)][(x+3)-(1-2x)]=0(-x+1)(3x+2)=0所以3x+2=0或-x+1=0,解得x1=,x2=1.【点睛】本题考查了一元二次方程的解法,根据方程的特点选择适当的方法是解决此题的关键.24、1【分析】根据根的判别式和根与系数的关系进行列式求解即可;【详解】∵,,,,,,,当时,原式=-15,当时,原式=1,代数式的最大值为1.【点睛】本题主要考查了一元二次方程的知识点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人血采集和保存行业经营分析报告
- 手链产业链招商引资的调研报告
- 种子清洗设备细分市场深度研究报告
- 粉饼盒用粉饼化妆品细分市场深度研究报告
- 修指甲服务行业相关项目经营管理报告
- 螺线管阀电磁开关细分市场深度研究报告
- 化妆服务行业营销策略方案
- 移动侦测器细分市场深度研究报告
- 扬声器纸产品供应链分析
- 冰箱自动化霜器产业链招商引资的调研报告
- 物业专业顾问合同模板
- 民间乐器培训活动方案
- 2024秋期国家开放大学本科《纳税筹划》一平台在线形考(形考任务一至五)试题及答案
- 2024年高级客房服务员职业鉴定理论考试题库及答案
- 互联网营销师教学计划和大纲
- Linux系统及应用学习通超星期末考试答案章节答案2024年
- 形势与政策智慧树知到答案2024年黑龙江农业工程职业学院
- 2024年全国统一高考数学试卷(理科)甲卷含答案
- 2023年山东选调考试真题
- 2024年公务员政治理论知识培训考试题库及答案(共四套)
- 【道法】走近老师 课件-2024-2025学年统编版道德与法治七年级上册
评论
0/150
提交评论