山东省济南天桥区四校联考2022-2023学年九年级数学第一学期期末检测模拟试题含解析_第1页
山东省济南天桥区四校联考2022-2023学年九年级数学第一学期期末检测模拟试题含解析_第2页
山东省济南天桥区四校联考2022-2023学年九年级数学第一学期期末检测模拟试题含解析_第3页
山东省济南天桥区四校联考2022-2023学年九年级数学第一学期期末检测模拟试题含解析_第4页
山东省济南天桥区四校联考2022-2023学年九年级数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列方程是一元二次方程的是()A. B. C. D.2.如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.8 B.6 C.4 D.53.如图,为外一点,分别切于点切于点且分别交于点,若,则的周长为()A. B. C. D.4.如图所示的几何体是由个大小相同的小立方块搭成,它的俯视图是()A. B. C. D.5.若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2 B.2 C.﹣ D.6.如图是一个几何体的三视图,这个几何体是().A.三棱锥 B.三棱柱 C.长方体 D.圆柱体7.关于x的方程有一个根是2,则另一个根等于()A.-4 B. C. D.8.如图平行四边变形ABCD中,E是BC上一点,BE∶EC=2∶3,AE交BD于F,则S△BFE∶S△FDA等于()A.2∶5 B.4∶9 C.4∶25 D.2∶39.一元二次方程中的常数项是()A.-5 B.5 C.-6 D.110.如图,AB是⊙O的直径,弦CD⊥AB,∠CAB=25°,则∠BOD等于()A.70° B.65° C.50° D.45°二、填空题(每小题3分,共24分)11.若一个三角形的两边长分别是4和6,第三边的长是方程x2﹣17x+60=0的一个根,则该三角形的第三边长是_____.12.某公园有一个圆形喷水池,喷出的水流呈抛物线,水流的高度(单位:)与水流喷出时间(单位:)之间的关系式为,那么水流从喷出至回落到水池所需要的时间是__________.13.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据函数图象,可以写出一系列的正确结论,如:a>0;b<0;c<0;对称轴为直线x=1;…请你再写出该函数图象的一个正确结论:_____.14.如图,在平面直角坐标系中,已知A(1.5,0),D(4.5,0),△ABC与△DEF位似,原点O是位似中心.若DE=7.5,则AB=_____.15.在一个不透明的袋子中,装有1个红球和2个白球,这些球除颜色外其余都相同。搅匀后从中随机一次摸出两个球,则摸到的两个球都是白球的概率是____.16.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=,则线段AC的长为.17.如图,在中,,是三角形的角平分线,如果,,那么点到直线的距离等于___________.18.已知点、在二次函数的图像上,则___.(填“”、“”、“”)三、解答题(共66分)19.(10分)一个不透明的盒子中装有2枚黑色的棋子和1枚白色的棋子,每枚棋子除了颜色外其余均相同.从盒中随机摸出一枚棋子,记下颜色后放回并搅匀,再从盒子中随机摸出一枚棋子,记下颜色,用画树状图(或列表)的方法,求两次摸出的棋子颜色不同的概率.20.(6分)解方程:(1)x2﹣2x﹣1=0(2)2(x﹣3)2=x2﹣921.(6分)计算:;22.(8分)如图,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)求证:∠ACO=∠BCD.(2)若EB=8cm,CD=24cm,求⊙O的直径.23.(8分)根据龙湾风景区的旅游信息,某公司组织一批员工到该风景区旅游,支付给旅行社28000元.你能确定参加这次旅游的人数吗?24.(8分)如图,一艘船由A港沿北偏东65°方向航行90km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,求A,C两港之间的距离.25.(10分)如图,四边形ABCD是⊙O的内接四边形,,AC为直径,DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)若AC=9,CE=3,求CD的长.26.(10分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中的值和“E”组对应的圆心角度数;(3)请估计该校2000名学生中每周的课外阅读时间不小于6小时的人数.

参考答案一、选择题(每小题3分,共30分)1、C【解析】试题解析:A、,没有给出a的取值,所以A选项错误;B、不含有二次项,所以B选项错误;C、是一元二次方程,所以C选项正确;D、不是整式方程,所以D选项错误.故选C.考点:一元二次方程的定义.2、D【分析】根据三角形中位线定理可知EF=DN,求出DN的最大值即可.【详解】解:如图,连结DN,

∵DE=EM,FN=FM,

∴EF=DN,

当点N与点B重合时,DN的值最大即EF最大,

在Rt△ABD中,∵∠A=90°,AD=6,AB=8,

∴,

∴EF的最大值=BD=1.

故选:D.【点睛】本题考查了三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想,属于中考常考题型.3、C【分析】根据切线长定理得到PB=PA、CA=CE,DE=DB,根据三角形的周长公式计算即可.【详解】解:∵PA、PB分别切⊙O于点A、B,

∴PB=PA=4,

∵CD切⊙O于点E且分别交PA、PB于点C,D,

∴CA=CE,DE=DB,

∴△PCD的周长=PC+PD+CD=PC+CA+PD+DB=PA+PB=8,

故选:C.【点睛】本题考查的是切线长定理的应用,切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.4、C【解析】根据简单几何体的三视图即可求解.【详解】三视图的俯视图,应从上面看,故选C【点睛】此题主要考查三视图的判断,解题的关键是熟知三视图的定义.5、A【解析】把点(1,-1)代入解析式得-1=,

解得k=-1.

故选A.6、B【解析】试题解析:根据三视图的知识,主视图为三角形,左视图为一个矩形,俯视图为两个矩形,故这个几何体为三棱柱.故选B.7、B【分析】利用根与系数的关系,,由一个根为2,以及a,c的值求出另一根即可.【详解】解:∵关于x的方程有一个根是2,∴,即∴,故选:B.【点睛】此题主要考查了根与系数的关系,熟练地运用根与系数的关系可以大大降低计算量.8、C【分析】由四边形ABCD是平行四边形,可得AD∥BE,由平行得相似,即△BEF∽△DAF,再利用相似比解答本题.【详解】∵,

∴,∵四边形是平行四边形,

∴,∥,

∴,,

∴,,故选:C.【点睛】本题考查了相似三角形的判定与性质.正确运用相似三角形的相似比是解题的关键.9、C【分析】将一元二次方程化成一般形式,即可得到常数项.【详解】解:∵∴∴常数项为-6故选C.【点睛】本题主要考查了一元二次方程的一般形式,准确的化出一元二次方程的一般形式是解决本题的关键.10、C【分析】先根据垂径定理可得,然后根据圆周角定理计算∠BOD的度数.【详解】解:∵弦CD⊥AB,∴,∴∠BOD=2∠CAB=2×25°=50°.故选:C.【点睛】本题考查了垂径定理、圆心角定理和圆周角定理,熟悉掌握定义,灵活应用是解本题的关键二、填空题(每小题3分,共24分)11、1【分析】根据三角形两边之和大于第三边,两边之差小于第三边,结合一元二次方程相关知识进行解题即可.【详解】解:∵x2﹣17x+60=0,∴(x﹣1)(x﹣12)=0,解得:x1=1,x2=12,∵三角形的两边长分别是4和6,当x=12时,6+4<12,不能组成三角形.∴这个三角形的第三边长是1.故答案为:1.【点睛】本题考查了三角形的三边关系和一元二次方程的求解,熟悉三角形三边关系是解题关键.12、1【分析】由于水流从抛出至回落到地面时高度h为0,把h=0代入h=30t-5t2即可求出t,也就求出了水流从抛出至回落到地面所需要的时间.【详解】水流从抛出至回落到地面时高度h为0,

把h=0代入h=30t-5t2得:5t2-30t=0,

解得:t1=0(舍去),t2=1.

故水流从抛出至回落到地面所需要的时间1s.故答案为:1【点睛】本题考查的是二次函数在实际生活中的应用,关键是正确理解题意,利用函数解决问题,结合实际判断所得出的解.13、4a+2b+c<1【分析】由函数的图象当x=2时,对应的函数值小于1,把x=2代入函数的关系式得,y=4a+2b+c,因此4a+2b+c<1.【详解】把x=2代入函数的关系式得,y=4a+2b+c,由图象可知当x=2时,相应的y<1,即:4a+2b+c<1,故答案为:4a+2b+c<1【点睛】考查二次函数的图象和性质,抛物线的性质可以从开口方向、对称轴、顶点坐标,以及图象过特殊点的性质.14、2.1.【分析】利用以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k得到位似比为,然后根据相似的性质计算AB的长.【详解】解:∵A(1.1,0),D(4.1,0),∴==,∵△ABC与△DEF位似,原点O是位似中心,∴==,∴AB=DE=×7.1=2.1.故答案为2.1.【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.15、.【分析】用列表法或画树状图法分析所有等可能的结果,然后根据概率公式求出该事件的概率.【详解】解:画树状图如下:

∵一共有6种情况,两个球都是白球有2种,

∴P(两个球都是白球),

故答案为:.【点睛】本题考查的是用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16、1.【分析】连结CD如图,根据圆周角定理得到∠ACD=90°,∠D=∠B,则sinD=sinB=,然后在Rt△ACD中利用∠D的正弦可计算出AC的长.【详解】解:连结CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠B,∴sinD=sinB=,在Rt△ACD中,∵sinD==,∴AC=AD=×8=1.故答案为1.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.17、1【分析】作DE⊥AB于E,如图,利用勾股定理计算出BC=5,再根据角平分线的性质得DC=DE,然后利用面积法得到×5,从而可求出DE.【详解】作DE⊥AB于E,如图,

在Rt△ABC中,BC==5,

∵AD是三角形的角平分线,

∴DC=DE,

∵S△ACD+S△ABD=S△ABC,

∴×5,

∴DE=1,

即点D到直线AB的距离等于1.

故答案为1.【点睛】此题考查角平分线的性质,解题关键在于掌握角的平分线上的点到角的两边的距离相等.18、【分析】把两点的坐标分别代入二次函数解析式求出纵坐标,再比较大小即可得解.【详解】时,,

时,,

∵>0,

∴;

故答案为:.【点睛】本题考查了二次函数的性质及二次函数图象上点的坐标特征,用求差法比较大小是常用的方法.三、解答题(共66分)19、.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的棋子颜色不同的情况,再利用概率公式即可求得答案.【详解】画树状图得:

∵共有9种等可能的结果,两次摸出的棋子颜色不同的有4种情况,

∴两次摸出的棋子颜色不同的概率为:.20、(1),;(2)x1=3,x2=9.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得;【详解】解:(1)∵a=1,b=﹣2,c=﹣1,∴△=(﹣2)2﹣4×1×(﹣1)=8>0,∴x=,即,.(2)∵2(x﹣3)2=x2﹣9,∴2(x﹣3)2=(x+3)(x﹣3),∴2(x﹣3)2﹣(x+3)(x﹣3)=0,∴(x﹣3)(x﹣9)=0,∴x﹣3=0或x﹣9=0,解得x1=3,x2=9.【点睛】本题主要考查了解一元二次方程的配方法和因式分解法,掌握解一元二次方程是解题的关键.21、1【分析】根据特殊角的三角函数值代入即可求解.【详解】【点睛】此题主要考查实数的计算,解题的关键是熟知特殊角的三角函数值.22、(1)证明见解析;(2)⊙O的直径为26cm.【分析】(1)由AB为⊙O的直径,CD是弦,且AB⊥CD于E,根据垂径定理的即可求得CE=ED,,然后由圆周角定理与等腰三角形的性质,即可证得:∠ACO=∠BCD.(2)设⊙O的半径为Rcm,得到OE=OB-EB=R-8,根据垂径定理得到CE=CD=24=12,利用在RtCEO中,由勾股定理列出方程,故可求解.【详解】证明:(1)∵AB为⊙O的直径,CD是弦,且ABCD于E,∴CE=ED,,∴BCD=BAC∵OA=OC,∴OAC=OCA,∴ACO=BCD(2)设⊙O的半径为Rcm,则OE=OB-EB=R-8,CE=CD=24=12在RtCEO中,由勾股定理可得OC=OE+CER=(R8)+12解得:R=13,∴2R=213=26答:⊙O的直径为26cm.【点睛】此题考查了圆周角定理、垂径定理、勾股定理以及相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.23、参加旅游的人数40人.【分析】首先设有人参加这次旅游,判定,然后根据题意列出方程,再判定出符合题意的解即可.【详解】设有人参加这次旅游∵∴参加人数依题意得:解得:,当时,,符合题意.当时,,不符合题意答:参加旅游的人数40人.【点睛】此题主要考查一元二次方程的实际应用,解题关键是理解题意,列出方程.24、(90+30)km.【分析】过B作BE⊥AC于E,在Rt△ABE中,由∠ABE=45°,AB=,可得AE=BE=AB=90km,在Rt△CBE中,由∠ACB=60°,可得CE=BE=30km,继而可得AC=AE+CE=90+30.【详解】解:根据题意得,∠CAB=65°﹣20°=45°,∠ACB=40°+20°=60°,AB=90,过B作BE⊥AC于E,∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,AB=,∴AE=BE=AB=90km,在Rt△CBE中,∵∠ACB=60°,∴CE=BE=30km,∴AC=AE+CE=90+30,∴A,C两港之间的距离为(90+30)km.【点睛】本题考查了解直角三角形的应用,方向角问题,三角形的内角和,是基础知识比较简单.25、(1)证明见解析;(2)【解析】分析:(1)根据圆内接四边形的性质得到∠DCE=∠BAD,根据圆周角定理得到∠DCE=∠BAD,证明即可;(2)证明△DCE∽△ACD,根据相似三角形的性质列出比例式,计算即可.详解:(1)证明:∵四边形ABCD是⊙

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论