版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省乐平市2025届数学九上期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.“线段,等边三角形,圆,矩形,正六边形”这五个图形中,既是轴对称图形又是中心对称图形的个数有()A.5个B.4个C.3个D.2个2.下面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中是中心对称图形,但不是轴对称图形的是A. B. C. D.3.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B的坐标为B(1,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E.现有下列结论:①a>0;②b>0;③1a+2b+c<0;④AD+CE=1.其中所有正确结论的序号是()A.①② B.①③ C.②③ D.②④4.某校数学课外小组,在坐标纸上为某湿地公园的一块空地设计植树方案如下:第k棵树种植在点Pk(xk,yk)处,其中x1=1,y1=1,且k≥2时,,[a]表示非负实数a的整数部分,例如[2.3]=2,,[1.5]=1.按此方案,第2119棵树种植点的坐标应为()A.(6,2121) B.(2119,5) C.(3,413) D.(414,4)5.如图,点D是△ABC的边AB上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论错误的是()A. B. C. D.6.下列说法,错误的是()A.为了解一种灯泡的使用寿命,宜采用普查的方法B.一组数据8,8,7,10,6,8,9的众数是8C.方差反映了一组数据与其平均数的偏离程度D.对于简单随机样本,可以用样本的方差去估计总体的方差7.如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于()A. B.2 C.1.5 D.8.如图,AB为圆O直径,C、D是圆上两点,ADC=110°,则OCB度()A.40 B.50 C.60 D.709.已知下列命题:①对角线互相平分的四边形是平行四边形;②内错角相等;③对角线互相垂直的四边形是菱形;④矩形的对角线相等,其中假命题有()A.个 B.个 C.个 D.个10.已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.二、三象限 B.一、三象限 C.三、四象限 D.二、四象限11.如果5x=6y,那么下列结论正确的是()A. B. C. D.12.已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠1二、填空题(每题4分,共24分)13.菱形的两条对角线分别是,,则菱形的边长为________,面积为________.14.如图,正△ABO的边长为2,O为坐标原点,A在轴上,B在第二象限.△ABO沿轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚10次后AB中点M经过的路径长为________15.某架飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t-t2,这架飞机着陆后滑行最后150m所用的时间是_______s.16.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为___________.17.如图,在△ABC中,∠B=45°,AB=4,BC=6,则△ABC的面积是__________.18.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是_____.三、解答题(共78分)19.(8分)如图,在矩形纸片中,已知,,点在边上移动,连接,将多边形沿折叠,得到多边形,点、的对应点分别为点,.(1)连接.则______,______°;(2)当恰好经过点时,求线段的长;(3)在点从点移动到点的过程中,求点移动的路径长.20.(8分)如图1,是内任意一点,连接,分别以为边作(在的左侧)和(在的右侧),使得,,连接.(1)求证:;(2)如图2,交于点,若,点共线,其他条件不变,①判断四边形的形状,并说明理由;②当,,且四边形是正方形时,直接写出的长.21.(8分)如图,在直角坐标系中,为坐标原点.已知反比例函数的图象经过点,过点作轴于点,的面积为.(1)求和的值;(2)若点在反比例函数的图象上运动,观察图象,当点的纵坐标是,则对应的的取值范围是.22.(10分)请完成下面的几何探究过程:(1)观察填空如图1,在Rt△ABC中,∠C=90°,AC=BC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°得到线段CE,连DE,BE,则①∠CBE的度数为____________;②当BE=____________时,四边形CDBE为正方形.(2)探究证明如图2,在Rt△ABC中,∠C=90°,BC=2AC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°后并延长为原来的两倍得到线段CE,连DE,BE则:①在点D的运动过程中,请判断∠CBE与∠A的大小关系,并证明;②当CD⊥AB时,求证:四边形CDBE为矩形(3)拓展延伸如图2,在点D的运动过程中,若△BCD恰好为等腰三角形,请直接写出此时AD的长.23.(10分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.24.(10分)在平面直角坐标系中,己知,.点从点开始沿边向点以的速度移动;点从点开始沿边内点以的速度移动.如果、同时出发,用表示移动的时间.(1)用含的代数式表示:线段_______;______;(2)当为何值时,四边形的面积为.(3)当与相似时,求出的值.25.(12分)已知为的外接圆,点是的内心,的延长线交于点,交于点.(1)如图1,求证:.(2)如图2,为的直径.若,求的长.26.已知关于x的方程x2-(2k-1)x+k2-2k+3=0有两个不相等的实数根.(1)求实数k的取值范围.(2)设方程的两个实数根分别为x1,x2,是否存在这样的实数k,使得|x1|-|x2|=成立?若存在,求出这样的k值;若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、B【解析】根据轴对称图形与中心对称图形的概念结合线段、等边三角形、圆、矩形、正六边形的性质求解.【详解】∵在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个.故答案为:B.【点睛】本题考查的知识点是中心对称图形与轴对称图形的概念,解题关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后原图形重合.2、B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形;
B、不是轴对称图形,是中心对称图形;
C、是轴对称图形,也是中心对称图形;
D、不是轴对称图形,也不是中心对称图形.
故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后与原图重合.3、D【分析】①根据抛物线开口方向即可判断;②根据对称轴在y轴右侧即可判断b的取值范围;③根据抛物线与x轴的交点坐标与对称轴即可判断;④根据抛物线与x轴的交点坐标及对称轴可得AD=BD,再根据CE∥AB,即可得结论.【详解】①观察图象开口向下,a<0,所以①错误;②对称轴在y轴右侧,b>0,所以②正确;③因为抛物线与x轴的一个交点B的坐标为(1,0),对称轴在y轴右侧,所以当x=2时,y>0,即1a+2b+c>0,所以>③错误;④∵抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,∴AD=BD.∵CE∥AB,∴四边形ODEC为矩形,∴CE=OD,∴AD+CE=BD+OD=OB=1,所以④正确.综上:②④正确.故选:D.【点睛】本题考查了二次函数图象与系数的关系,解决本题的关键是综合运用二次函数图象上点的坐标特征、抛物线与x轴的交点进行计算.4、D【分析】根据已知分别求出1≤k≤5时,P点坐标为(1,1)、(1,2)、(1,3)、(1,4)、(1,5),当6≤k≤11时,P点坐标为(2,1)、(2,2)、(2,3)、(2,4)、(2,5),通过观察得到点的坐标特点,进而求解.【详解】解:由题可知1≤k≤5时,P点坐标为(1,1)、(1,2)、(1,3)、(1,4)、(1,5),当6≤k≤11时,P点坐标为(2,1)、(2,2)、(2,3)、(2,4)、(2,5),……通过以上数据可得,P点的纵坐标5个一组循环,∵2119÷5=413…4,∴当k=2119时,P点的纵坐标是4,横坐标是413+1=414,∴P(414,4),故选:D.【点睛】本题考查点的坐标和探索规律;能够理解题意,通过已知条件探索点的坐标循环规律是解题的关键.5、D【分析】由平行线分线段成比例和相似三角形的性质进行判断.【详解】∵DE//BC,∴,故A正确;∵DF//BE,∴△ADF∽△ABF,∴,故B正确;∵DF//BE,∴,∵,∴,故C正确;∵DE//BC,∴△ADE∽△ABC,∴,∵DF//BE,∴,∴,故D错误.故选D.【点睛】本题考查平行线分线段成比例性质,相似三角形的性质,由平行线得出比例关系是关键.6、A【分析】利用抽样调查、普查的特点和试用的范围和众数、方差的意义即可做出判断.【详解】A.灯泡数量很庞大,了解它的使用寿命不宜采用普查的方法,应该采用抽查的方法,所以A错误;B.众数是一组数据中出现次数最多的数值,所以8,8,7,10,6,8,9的众数是8正确;C.方差反映了一组数据与其平均数的偏离程度,正确;D.对于简单随机样本,可以用样本的方差去估计总体的方差,正确;故选A.【点睛】本题考查的是调查、众数、方差的意义,能够熟练掌握这些知识是解题的关键.7、B【详解】解:∵ABCD是矩形,∴AD=BC,∠B=90°,∵翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,∴AO=AD,CO=BC,∠AOE=∠COF=90°,∴AO=CO,AC=AO+CO=AD+BC=2BC,∴∠CAB=30°,∴∠ACB=60°,∴∠BCE=∠ACB=30°,∴BE=CE,∵AB∥CD,∴∠OAE=∠FCO,在△AOE和△COF中,∵∠OAE=∠FCO,AO=CO,∠AOE=∠COF,∴△AOE≌△COF,∴OE=OF,∴EF与AC互相垂直平分,∴四边形AECF为菱形,∴AE=CE,∴BE=AE,∴=2,故选B.【点睛】本题考查翻折变换(折叠问题).8、D【分析】根据角的度数推出弧的度数,再利用外角∠AOC的性质即可解题.【详解】解:∵ADC=110°,即优弧的度数是220°,∴劣弧的度数是140°,∴∠AOC=140°,∵OC=OB,∴∠OCB=∠AOC=70°,故选D.【点睛】本题考查圆周角定理、外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9、B【分析】利用平行四边形的判定、平行线的性质、菱形的判定和矩形的性质分别对各命题进行判断即可.【详解】解:①根据平行四边形的判定定理可知,对角线互相平分的四边形是平行四边形,故①是真命题;②两直线平行,内错角相等,故②为假命题;③根据菱形的判定定理,对角线互相垂直且平分的四边形是菱形,故③是假命题;④根据矩形的性质,矩形的对角线相等,故④是真命题;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行四边形的判定、平行线的性质、菱形的判定及矩形的性质,难度不大.10、D【分析】此题涉及的知识点是反比例函数的图像与性质,根据点坐标P(﹣1,2)带入反比例函数y=中求出k值就可以判断图像的位置.【详解】根据y=的图像经过点P(-1,2),代入可求的k=-2,因此可知k<0,即图像经过二四象限.故选D【点睛】此题重点考察学生对于反比例函数图像和性质的掌握,把握其中的规律是解题的关键.11、A【解析】试题解析:A,可以得出:故选A.12、D【分析】根据方程有两个不相等的实数根,得到一元二次方程的二次项系数不为零、根的判别式的值大于零,从而列出关于的不等式组,求出不等式组的解集即可得到的取值范围.【详解】根据题意得:,且,解得:,且.故选:D.【点睛】本题考查了一元二次方程的定义以及根的判别式,能够准确得到关于的不等式组是解决问题的关键.二、填空题(每题4分,共24分)13、【分析】根据菱形的对角线互相垂直平分求出两对角线的一半,然后利用勾股定理求出菱形的边长,再根据菱形的面积等于对角线乘积的一半求菱形的面积即可.【详解】∵菱形的两条对角线长分别为6cm,8cm,∴对角线的一半分别为3cm,4cm,∴根据勾股定理可得菱形的边长为:=5cm,∴面积S=×6×8=14cm1.故答案为5;14.【点睛】本题考查了菱形的性质及勾股定理的应用,熟记菱形的性质是解决本题的关键.14、(4+)【分析】根据题意先作B3E⊥x轴于E,观察图象可知为三次一个循环,求点M的运动路径,进而分析求得翻滚10次后AB中点M经过的路径长.【详解】解:如图作B3E⊥x轴于E,可知OE=5,B3E=,观察图象可知为三次一个循环,一个循环点M的运动路径为:,则翻滚10次后AB中点M经过的路径长为:.故答案为:(4+).【点睛】本题考查规律题,解题的关键是灵活运用弧长公式、等边三角形的性质等知识解决问题.15、1【解析】由于飞机着陆,不会倒着跑,所以当y取得最大值时,t也取得最大值,求得t的取值范围,然后解方程即可得到结论.【详解】当y取得最大值时,飞机停下来,则y=60t-t2=-(t-20)2+600,此时t=20,飞机着陆后滑行600米才能停下来.因此t的取值范围是0≤t≤20;即当y=600-150=450时,即60t-t2=450,解得:t=1,t=30(不合题意舍去),∴滑行最后的150m所用的时间是20-1=1,故答案是:1.【点睛】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.16、.【解析】⊙O是△ABC的外接圆,∠BAC=60°,;因为OB、OC是⊙O的半径,所以OB=OC,所以=,在中,若⊙O的半径OC为2,OB=OC=2,在中,BC="2"=【点睛】本题考查圆周角与圆心角、弦心距,要求考生熟悉圆周角与圆心角的关系,会求弦心距和弦长17、6【分析】作辅助线AD⊥BC构造直角三角形ABD,利用锐角∠B的正弦函数的定义求出三角形ABC底边BC上的高AD的长度,然后根据三角形的面积公式来求△ABC的面积即可.【详解】过A作AD垂直BC于D,在Rt△ABD中,∵sinB=,∴AD=AB•sinB=4•sin45°=4×=,∴S△ABC=BC•AD=×6×=,故答案为:【点睛】本题考查了解直角三角形.解答该题时,通过作辅助线△ABC底边BC上的高线AD构造直角三角形,利用锐角三角函数的定义在直角三角形中求得AD的长度的.18、1【分析】作PE⊥OA,再根据角平分线的性质得出PE=PD即可得出答案.【详解】过P作PE⊥OA于点E,∵点P是∠AOB平分线OC上一点,PD⊥OB,∴PE=PD,∵PD=1,∴PE=1,∴点P到边OA的距离是1.故答案为1.【点睛】本题考查角平分线的性质,关键在于牢记角平分线的性质并灵活运用.三、解答题(共78分)19、(1),30;(2);(3)的长【分析】(1)直接利用勾股定理可求出AC的长,再利用特殊角的三角函数值可得出DAC的度数(2)设CE=x,则DE=,根据已知条件得出,再利用相似三角形对应线段成比例求解即可.(3)点运动的路径长为的长,求出圆心角,半径即可解决问题.【详解】解:(1)连接AC∵∴(2)由已知条件得出,,,易证∴∴∴(3)如图所示,运动的路径长为的长由翻折得:∴∴的长【点睛】本题考查的知识点有相似三角形的判定与性质,特殊的三角函数值,弧长的相关计算等,解题的关键是弄清题意,综合利用各知识点来求解.20、(1)证明见解析;(2)①四边形是矩形.理由见解析;②.【分析】(1)根据,得到,,再证,方法一:通过证明,,从而四边形是平行四边形,,所以为矩形.方法二:证明方法三:证,,.【详解】(1)∵,∴,.∴,,即..∴.(2)①四边形是矩形.理由如下:方法一:由(1)知,.∴.∵,∴.∴.∴.∵,∴,.∴,,即.∴.∴.∵.∴.∴.∴.∴.∴四边形是平行四边形.∵,,点共线,∴.∴四边形是矩形.方法二:如图由(1)知,∴.∵,,点共线,∴.∴,.又∵,∴.∴.∴.∵,∴,即.∴.∵,∴,∴,,即.∴,∴.∵,,点共线,∴.∴,.∴,即.∴.∵,,∴四边形是矩形.方法三:由(1)知,.∴.∵,∴.∴.∴.由(1)知,∴.∵,,点共线,∴.∴,.又∵,∴,∴.∴.∵,∴,即.∴.∵,∴.∴四边形是矩形.②【点睛】本题主要考查了相似三角形的性质以及矩形的性质.21、(1),;(2)【分析】(1)利用三角形的面积可求出m的值,得出点A的坐标,再代入反比例函数即可得出K的值;(2)利用(1)中得出的反比例函数的解析式求出当y=0时x的值,再根据反比例函数图象的增减性求解即可.【详解】解:(1)∵,∴,.∴,∴,∴点的坐标为代入,得;(2)由(1)得,反比例函数的解析式为:∵当时,∵当时,y随x的增大而减小∴的取值范围是.【点睛】本题考查的知识点是求反比例函数解析式以及反比例函数的性质,掌握以上知识点是解此题的关键.22、(1)①45°,②;(2)①,理由见解析,②见解析;(3)或【分析】(1)①由等腰直角三角形的性质得出,由旋转的性质得:,,证明,即可得出结果;②由①得,求出,作于,则是等腰直角三角形,证出是等腰直角三角形,求出,证出四边形是矩形,再由垂直平分线的性质得出,即可得出结论;(2)①证明,即可得出;②由垂直的定义得出,由相似三角形的性质得出,即可得出结论;(3)存在两种情况:①当时,证出,由勾股定理求出,即可得出结果;②当时,得出即可.【详解】解:(1)①,,,由旋转的性质得:,,在和中,,,;故答案为:;②当时,四边形是正方形;理由如下:由①得:,,作于,如图所示:则是等腰直角三角形,,,,,是等腰直角三角形,,,又,四边形是矩形,又垂直平分,,四边形是正方形;故答案为:;(2)①,理由如下:由旋转的性质得:,,,,,;②,,由①得:,,又,四边形是矩形;(3)在点的运动过程中,若恰好为等腰三角形,存在两种情况:①当时,则,,,,,,,,;②当时,;综上所述:若恰好为等腰三角形,此时的长为或.【点睛】本题是四边形综合题目,考查了旋转的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、矩形的判定、正方形的判定、相似三角形的判定与性质、勾股定理以及分类讨论等知识;本题综合性强,熟练掌握旋转的性质,证明三角形相似是解决问题的关键,注意分类讨论.23、(1)23(2)77.5(3)甲学生在该年级的排名更靠前(4)224【分析】(1)根据条形图及成绩在这一组的数据可得;(2)根据中位数的定义求解可得;(3)将各自成绩与该年级的中位数比较可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数所占比例可得.【详解】解:(1)在这次测试中,七年级在80分以上(含80分)的有人,故答案为23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79,,故答案为77.5;(3)甲学生在该年级的排名更靠前,七年级学生甲的成绩大于中位数78分,其名次在该班25名之前,八年级学生乙的成绩小于中位数78分,其名次在该班25名之后,甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为(人).【点睛】本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.24、(1)2t,(5﹣t);(2)t=2或3;(3)t或1.【分析】(1)根据路程=速度×时间可求解;(2)根据S四边形PABQ=S△ABO﹣S△PQO列出方程求解;(3)分或两种情形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2031年中国高性能小功率变频器行业投资前景及策略咨询研究报告
- 2025至2031年中国硅胶线行业投资前景及策略咨询研究报告
- 二零二五年度中式面馆区域代理授权合同
- 2025年度知识产权归属及商业秘密保护合作协议
- 二零二五年度婴幼儿早教与育儿嫂服务合同
- 2025年度美甲店门面转让及专业技术培训合同
- 二零二五年度数码产品销售提成合同
- 2025年度房屋租赁合同提前解除法律效力确认书
- 2025年度电商直播平台主播粉丝经济合作合同
- 二零二五年度上市公司协议转让易主合同退出机制设计
- 运输车辆挂靠协议书(15篇)
- 《财务管理学(第10版)》课件 第5、6章 长期筹资方式、资本结构决策
- 房屋永久居住权合同模板
- 初中英语不规则动词表(译林版-中英)
- 2024年3月四川省公务员考试面试题及参考答案
- 新生儿黄疸早期识别课件
- 医药营销团队建设与管理
- 二年级数学上册口算题100道(全册完整)
- 冷轧工程专业词汇汇编注音版
- 小升初幼升小择校毕业升学儿童简历
- 第一单元(金融知识进课堂)课件
评论
0/150
提交评论