四川省成都市成都高新实验中学2025届数学九上期末综合测试试题含解析_第1页
四川省成都市成都高新实验中学2025届数学九上期末综合测试试题含解析_第2页
四川省成都市成都高新实验中学2025届数学九上期末综合测试试题含解析_第3页
四川省成都市成都高新实验中学2025届数学九上期末综合测试试题含解析_第4页
四川省成都市成都高新实验中学2025届数学九上期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都市成都高新实验中学2025届数学九上期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是()A. B. C. D.2.反比例函数(x<0)如图所示,则矩形OAPB的面积是()A.-4 B.-2 C.2 D.43.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>1;②b2﹣4ac>1;③9a﹣3b+c=1;④若点(﹣1.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<1.其中正确的个数有()A.2 B.3 C.4 D.55.将y=﹣(x+4)2+1的图象向右平移2个单位,再向下平移3个单位,所得函数最大值为()A.y=﹣2 B.y=2 C.y=﹣3 D.y=36.由于受猪瘟的影响,今年9月份猪肉的价格两次大幅上涨,瘦肉价格由原来每千克23元,连续两次上涨后,售价上升到每千克40元,则下列方程中正确的是()A. B.C. D.7.把抛物线y=(x﹣1)2+2沿x轴向右平移2个单位后,再沿y轴向下平移3个单位,得到的抛物线解析式为()A.y=(x﹣3)2+1 B.y=(x+1)2﹣1 C.y=(x﹣3)2﹣1 D.y=(x+1)2﹣28.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A. B. C. D.9.点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是()A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定10.下列说法正确的是()A.可能性很大的事情是必然发生的B.可能性很小的事情是不可能发生的C.“掷一次骰子,向上一面的点数是6”是不可能事件D.“任意画一个三角形,其内角和是”11.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到颜色相同的球的概率为()A. B. C. D.12.函数y=(x+1)2-2的最小值是()A.1 B.-1 C.2 D.-2二、填空题(每题4分,共24分)13.如图,小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会(只填序号)________.①越来越长,②越来越短,③长度不变.在D处发现自己在地面上的影子长DE是2米,如果小明的身高为1.7米,那么路灯离地面的高度AB是________米.14.已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.x…﹣1012…y…0343…15.学生晓华5次数学成绩为86,87,89,88,89,则这5个数据的中位数是___________.16.在平面直角坐标系中,点P的坐标为(﹣4,0),半径为1的动圆⊙P沿x轴正方向运动,若运动后⊙P与y轴相切,则点P的运动距离为______.

17.在中,,,,则的长是__________.18.若两个相似三角形的周长比为2:3,则它们的面积比是_________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,将一个图形绕原点顺时针方向旋转称为一次“直角旋转,已知的三个顶点的坐标分别为,,,完成下列任务:(1)画出经过一次直角旋转后得到的;(2)若点是内部的任意一点,将连续做次“直角旋转”(为正整数),点的对应点的坐标为,则的最小值为;此时,与的位置关系为.(3)求出点旋转到点所经过的路径长.20.(8分)(1)已知,求的值;(2)已知直线分别截直线于点,截直线于点,且,,求的长.21.(8分)如图,抛物线经过点,请解答下列问题:求抛物线的解析式;抛物线的顶点为点,对称轴与轴交于点,连接,求的长.点在抛物线的对称轴上运动,是否存在点,使的面积为,如果存在,直接写出点的坐标;如果不存在,请说明理由.22.(10分)总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆人次,进馆人次逐月增加,到第三个月末累计进馆人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.23.(10分)解方程:(1)x2-3x+1=1;(2)x(x+3)-(2x+6)=1.24.(10分)用适当的方法解下列一元二次方程:(1)x2+4x﹣2=0;(2)(x+2)2=3(x+2).25.(12分)在平面直角坐标系中,直线与反比例函数的图象的两个交点分别为点(,)和点.(1)求的值和点的坐标;(2)如果点为轴上的一点,且∠直接写出点A的坐标.26.已知关于的方程.(1)求证:方程一定有两个实数根;(2)若方程的两个实数根都是整数,求正整数k的值.

参考答案一、选择题(每题4分,共48分)1、B【解析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是.故选B.【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.2、D【分析】根据反比例函数的比例系数的几何意义:反比例函数图象上一点向x轴,y轴作垂线与坐标轴围成的矩形面积等于|k|解答即可.【详解】∵点P在反比例函数(x<0)的图象上,∴S矩形OAPB=|-4|=4,故选:D.【点睛】本题主要考查反比例函数的比例系数的几何意义,掌握反比例函数上一点向x轴,y轴作垂线与坐标轴围成的矩形面积等于|k|是关键.3、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、B【分析】分析:根据二次函数的性质一一判断即可.【详解】详解:∵抛物线对称轴x=-1,经过(1,1),∴-=-1,a+b+c=1,∴b=2a,c=-3a,∵a>1,∴b>1,c<1,∴abc<1,故①错误,∵抛物线对称轴x=-1,经过(1,1),可知抛物线与x轴还有另外一个交点(-3,1)∴抛物线与x轴有两个交点,∴b2-4ac>1,故②正确,∵抛物线与x轴交于(-3,1),∴9a-3b+c=1,故③正确,∵点(-1.5,y1),(-2,y2)均在抛物线上,(-1.5,y1)关于对称轴的对称点为(-1.5,y1)(-1.5,y1),(-2,y2)均在抛物线上,且在对称轴左侧,-1.5>-2,则y1<y2;故④错误,∵5a-2b+c=5a-4a-3a=-2a<1,故⑤正确,故选B.【点睛】本题考查二次函数与系数的关系,二次函数图象上上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5、A【分析】根据二次函数图象“左移x加,右移x减,上移c加,下移c减”的规律即可知平移后的解析式,进而可判断最值.【详解】将y=﹣(x+4)1+1的图象向右平移1个单位,再向下平移3个单位,所得图象的函数表达式是y=﹣(x+4﹣1)1+1﹣3,即y=﹣(x+1)1﹣1,所以其顶点坐标是(﹣1,﹣1),由于该函数图象开口方向向下,所以,所得函数的最大值是﹣1.故选:A.【点睛】本题主要考查二次函数图象的平移问题和最值问题,熟练掌握平移规律是解题关键.6、A【分析】根据增长率a%求出第一次提价后的售价,然后再求第二次提价后的售价,即可得出答案.【详解】根据题意可得:23(1+a%)2=40,故答案选择A.【点睛】本题考查的是一元二次方程在实际生活中的应用,比较简单,记住公式“增长后的量=增长前的量×(1+增长率)”.7、C【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】把抛物线y=(x﹣1)2+2沿x轴向右平移2个单位后,再沿y轴向下平移3个单位,得到的抛物线解析式为y=(x﹣1﹣2)2+2﹣3,即y=(x﹣3)2﹣1.故选:C.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.8、B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,只有选项B符合条件.故选B.9、A【解析】∵反比例函数y=中的9>0,∴经过第一、三象限,且在每一象限内y随x的增大而减小,又∵A(1,y₁)、B(3,y₂)都位于第一象限,且1<3,∴y₁>y₂,故选A.10、D【分析】了解事件发生的可能性与必然事件、不可能事件、可能事件之间的关系.【详解】解:A错误.可能性很大的事件并非必然发生,必然发生的事件的概率为1;B错误.可能性很小的事件指事件发生的概率很小,不可能事件的概率为0;C错误.掷一枚普通的正方体骰子,结果恰好点数“6”朝上的概率为.为可能事件.D正确.三角形内角和是180°.故选:D.【点睛】本题考查事件发生的可能性,注意可能性较小的事件也有可能发生;可能性很大的事也有可能不发生.11、C【分析】用列表法或树状图法可以列举出所有等可能出现的结果,然后看符合条件的占总数的几分之几即可【详解】解:两次摸球的所有的可能性树状图如下:

共有4种等可能的结果,其中两次都摸到颜色相同的球结果共有2种,

∴两次都摸到颜色相同的球的概率为.

故选C.【点睛】本题考查用树状图或列表法求等可能事件发生的概率,关键是列举出所有等可能出现的结果数,然后用分数表示,同时注意“放回”与“不放回”的区别.12、D【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.二、填空题(每题4分,共24分)13、①;5.95.【解析】试题解析:小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会越来越长;∵CD∥AB,∴△ECD∽△EBA,∴,即,∴AB=5.95(m).考点:中心投影.14、(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.15、1【分析】根据中位数的概念求解即可.【详解】这组数据按照从小到大的顺序排列为:86,87,1,89,89,

则这5个数的中位数为:1.

故答案为:1.【点睛】本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.16、3或1【解析】利用切线的性质得到点P到y轴的距离为1,此时P点坐标为(-1,0)或(1,0),然后分别计算点(-1,0)和(1,0)到(-4,0)的距离即可.【详解】若运动后⊙P与y轴相切,则点P到y轴的距离为1,此时P点坐标为(-1,0)或(1,0),而-1-(-4)=3,1-(-4)=1,所以点P的运动距离为3或1.故答案为3或1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.17、【分析】根据cosA=可求得AB的长.【详解】解:由题意得,cosA=,∴cos45°=,解得AB=.故答案为:.【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.18、4∶1【解析】试题解析:∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比为2:3,∴它们的面积比是4:1.考点:相似三角形的性质.三、解答题(共78分)19、(1)图见解析;(2)2,关于中心对称;(3).【分析】(1)根据图形旋转的性质画出旋转后的△即可;(2)根据中心对称的性质即可得出结论;(3)根据弧长公式求解即可.【详解】解:(1)如图,△即为所求;(2)点的对应点的坐标为,点与关于点对称,.故答案为:2,关于中心对称.(3)∵点A坐标为∴,则旋转到点所经过的路径长.【点睛】本题考查了根据旋转变换作图以及弧长公式,解答本题的关键是根据网格结构找出对应点的位置.20、(1)9;(2)6.【分析】(1)交叉相乘,化简后同除以y即可得出答案;(2)根据平行线的性质计算即可得出答案.【详解】解:(1)∴;(2)∵∴即:∴【点睛】本题考查的是解分式方程以及平行线的性质,比较简单,需要熟练掌握相关基础知识.21、(1)y=-x2+2x+3;(2)2;(3)存在点F,点F(1,2)或(1,-2)【分析】(1)利用待定系数法即可求出结论;(2)先求出顶点D的坐标,然后分别求出BE和DE的长,利用勾股定理即可求出结论;(3)先求出BC的长,然后根据三角形的面积公式即可求出点F的纵坐标,从而求出结论.【详解】解:(1)∵抛物线y=ax2+2x+c经过点A(0,3),B(-1,0),∴将A(0,3),B(-1,0)代入得:,解得:则抛物线解析式为y=-x2+2x+3;(2)y=-x2+2x+3=-(x-1)2+4由D为抛物线顶点,得到D(1,4),∵

对称轴与

x

轴交于点E

,∴

DE=4,OE=1

,∵

B(﹣1,0),∴

BO=1,∴

BE=2,在

RtBED

中,根据勾股定理得:

BD==2(3)抛物线的对称轴为直线x=1由对称性可得:点C的坐标为(3,0)∴BC=3-(-1)=4∵的面积为,∴BC·=4解得:=2或-2∴点F的坐标为(1,2)或(1,-2)即存在点F,点F(1,2)或(1,-2)【点睛】此题考查的是二次函数的综合大题,掌握利用待定系数法求二次函数解析式、勾股定理和三角形的面积公式是解决此题的关键.22、(1)进馆人次的月平均增长率为.(2)校图书馆能接纳第四个月的进馆人次.【分析】(1)先分别表示出第二个月和第三个月的进馆人次,再根据第一个月的进馆人次加第二和第三个月的进馆人次等于,列方程求解;(2)根据(1)所计算出的月平均增长率,计算出第四个月的进馆人次,再与比较大小即可.【详解】(1)设进馆人次的月平均增长率为,则由题意得:化简得:,或(舍)答:进馆人次的月平均增长率为.(2)∵进馆人次的月平均增长率为,第四个月的进馆人次为:答:校图书馆能接纳第四个月的进馆人次.【点睛】本题属于一元二次方程的应用题,列出方程是解题的关键.本题难度适中,属于中档题.23、(4)x4=,x2=;(2)x4=-3,x2=2.【解析】试题分析:(4)直接利用公式法求出x的值即可;(2)先把原方程进行因式分解,再求出x的值即可.试题解析:(4)∵一元二次方程x2-3x+4=4中,a=4,b=-3,c=4,∴△=b2-4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论