版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届四川省成都市高新南区九上数学期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在一个不透明的盒子中,装有绿色、黑色、白色的小球共有60个,除颜色外其他完全相同,一同学通过多次摸球试验后发现其中摸到绿色球、黑色球的频率稳定在和,盒子中白色球的个数可能是()A.24个 B.18个 C.16个 D.6个2.对于问题:如图1,已知∠AOB,只用直尺和圆规判断∠AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若测量得OE=OD,则∠AOB=90º.则小意同学判断的依据是()A.等角对等边 B.线段中垂线上的点到线段两段距离相等C.垂线段最短 D.等腰三角形“三线合一”3.如图,将△ABC绕点C顺时针旋转50°得△DEC,若AC⊥DE,则∠BAC等于()A.30° B.40° C.50° D.60°4.在平面直角坐标系中,点P(﹣1,2)关于原点的对称点的坐标为()A.(﹣1,﹣2)B.(1,﹣2)C.(2,﹣1)D.(﹣2,1)5.二次函数图像的顶点坐标是()A. B. C. D.6.方程的解是().A.x1=x2=0 B.x1=x2=1 C.x1=0,x2=1 D.x1=0,x2=-17.设是方程的两个实数根,则的值为()A.2017 B.2018 C.2019 D.20208.一块圆形宣传标志牌如图所示,点,,在上,垂直平分于点,现测得,,则圆形标志牌的半径为()A. B. C. D.9.在平面直角坐标系xOy中,经过点(sin45°,cos30°)的直线,与以原点为圆心,2为半径的圆的位置关系是()A.相交 B.相切C.相离 D.以上三者都有可能10.如果,两点都在反比例函数的图象上,那么与的大小关系是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,已知是直角,在射线上取一点为圆心、为半径画圆,射线绕点顺时针旋转__________度时与圆第一次相切.12.如图,在某一时刻,太阳光线与地面成的角,一只皮球在太阳光的照射下的投影长为,则皮球的直径是______.13.圆的半径为1,AB是圆中的一条弦,AB=,则弦AB所对的圆周角的度数为____.14.抛物线y=2(x﹣1)2﹣5的顶点坐标是_____.15.已知甲、乙两种棉花的纤维长度的平均数相等,若甲种棉花的纤维长度的方差,乙种棉花的纤维长度的方差,则甲、乙两种棉花质量较好的是▲.16.已知关于的方程有两个不相等的实数根,则的取值范围是________.17.在△ABC中,分别以AB,AC为斜边作Rt△ABD和Rt△ACE,∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,连接DE.若DE=5,则BC长为_____.18.在中,,,,则的长是__________.三、解答题(共66分)19.(10分)用适当的方法解下列方程:(1)x2-6x+1=0(2)x2-4=2x+420.(6分)解方程:(1)x2-4x+1=0
(2)x2+3x-4=021.(6分)如图,AB和DE直立在地面上的两根立柱,已知AB=5m,某一时刻AB在太阳光下的影子长BC=3m.(1)在图中画出此时DE在太阳光下的影子EF;(2)在测量AB影子长时,同时测量出EF=6m,计算DE的长.22.(8分)如图,的顶点是双曲线与直线在第二象限的交点.轴于,且.(1)求反比例函数的解析式;(2)直线与双曲线交点为、,记的面积为,的面积为,求23.(8分)如图,已知AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.若,DE=6,求EF的长.24.(8分)小华为了测量楼房的高度,他从楼底的处沿着斜坡向上行走,到达坡顶处.已知斜坡的坡角为,小华的身高是,他站在坡顶看楼顶处的仰角为,求楼房的高度.(计算结果精确到)(参考数据:,,)25.(10分)如图,是的直径,切于点,交于点,平分,连接.(1)求证:;(2)若,,求的半径.26.(10分)解分式方程:.
参考答案一、选择题(每小题3分,共30分)1、B【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数,计算白球的个数.【详解】解:∵摸到绿色球、黑色球的频率稳定在和,∴摸到白球的频率为1-25%-45%=30%,故口袋中白色球的个数可能是60×30%=18个.故选:B.【点睛】本题考查了利用频率估计概率的知识,具体数目应等于总数乘部分所占总体的比值.2、B【分析】由垂直平分线的判定定理,即可得到答案.【详解】解:根据题意,∵CD=CE,OE=OD,∴AO是线段DE的垂直平分线,∴∠AOB=90°;则小意同学判断的依据是:线段中垂线上的点到线段两段距离相等;故选:B.【点睛】本题考查了垂直平分线的判定定理,解题的关键是熟练掌握垂直平分线的判定定理进行判断.3、B【分析】根据旋转的性质可求得∠ACD,根据互余关系可求∠D,根据对应角相等即可得∠BAC的大小.【详解】解:依题意得旋转角∠ACD=50°,由于AC⊥DE,由互余关系可得∠D=90°-50°=40°,由旋转后对应角相等,得∠BAC=∠D=40°,故B选项正确.【点睛】本题考查了图形的旋转变化,要分清是顺时针还是逆时针旋转,旋转了多少度,难度不大,但容易出错,细心点即可.4、B【解析】用关于原点的对称点的坐标特征进行判断即可.【详解】点P(-1,2)关于原点的对称点的坐标为(1,-2),故选:B.【点睛】根据两个点关于原点对称时,它们的坐标符号相反.5、D【分析】先把二次函数进行配方得到抛物线的顶点式,根据二次函数的性质即可得到其顶点坐标.【详解】∵,∴二次函数的顶点坐标为.
故选:D.【点睛】本题考查二次函数的顶点坐标,配方是解决问题的关键,属基础题.6、D【分析】利用提公因式法解方程,即可得到答案.【详解】解:∵,∴,∴或;故选择:D.【点睛】本题考查了解一元二次方程,熟练掌握提公因式法解方程是解题的关键.7、D【分析】首先根据根与系数的关系,求出a+b=-3;然后根据a是方程的实数根,可得,据此求出,利用根与系数关系得:=-3,变形为()-(),代入即可得到答案.【详解】解:∵a、b是方程的两个实数根,
∴=-3;
又∵,
∴,∴
=()-()=2017-(-3)
=1
即的值为1.
故选:D.【点睛】本题考查了根与系数的关系与一元二次方程的解,把化成()-()是解题的关键.8、B【分析】连结,,设半径为r,根据垂径定理得,在中,由勾股定理建立方程,解之即可求得答案.【详解】连结,,如图,设半径为,∵,,∴,点、、三点共线,∵,∴,在中,∵,,即,解得,故选B.【点睛】本题考查勾股定理,关键是利用垂径定理解答.9、A【解析】试题分析:本题考查了直线和圆的位置关系,用到的知识点有特殊角的锐角三角函数值、勾股定理的运用,判定点A和圆的位置关系是解题关键.设直线经过的点为A,若点A在圆内则直线和圆一定相交;若点在圆上或圆外则直线和圆有可能相交或相切或相离,所以先要计算OA的长和半径2比较大小再做选择.设直线经过的点为A,∵点A的坐标为(sin45°,cos30°),∴OA==,∵圆的半径为2,∴OA<2,∴点A在圆内,∴直线和圆一定相交.故选A.考点:1.直线与圆的位置关系;2.坐标与图形性质;3.特殊角的三角函数值.10、C【分析】直接把点A(1,y1),B(3,y1)两点代入反比例函数中,求出y1与y1的值,再比较其大小即可.【详解】解:∵A(1,y1),B(3,y1)两点都在反比例函数的图象上;∴y1>y1.
故选:C.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题(每小题3分,共24分)11、60【分析】根据题意,画出旋转过程中,与圆相切时的切线BA1,切点为D,连接OD,根据切线的性质可得∠ODB=90°,然后根据已知条件,即可得出∠OBD=30°,从而求出旋转角∠ABA1.【详解】解:如下图所示,射线BA1为射线与圆第一次相切时的切线,切点为D,连接OD∴∠ODB=90°根据题意可知:∴∠OBD=30°∴旋转角:∠ABA1=∠ABC-∠OBD=60°故答案为:60【点睛】此题考查的是切线的性质和旋转角,掌握切线的性质是解决此题的关键.12、15【分析】由图可得AC即为投影长,过点A作于点B,由光线平行这一性质可得,且AB即为圆的半径,利用三角函数可得AB长.【详解】解:如图,过点A作于点B,由光线平行这一性质可得,且AB即为圆的半径,AC即为投影长.在中,,所以皮球的直径是15cm.故答案为:15.【点睛】本题考查了三角函数的应用,由图确定圆的投影长及直径是解题的关键.13、60°或120°【解析】试题解析:如图,作OH⊥AB于H,连接OA、OB,∠C和∠C′为AB所对的圆周角,∵OH⊥AB,∴AH=BH=AB=,在Rt△OAH中,∵cos∠OAH=,∴∠OAH=30°,∴∠AOB=180°-60°=120°,∴∠C=∠AOB=60°,∴∠C′=180°-∠C=120°,即弦AB所对的圆周角为60°或120°.点睛:圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.14、(1,﹣5)【分析】根据二次函数的顶点式即可求解.【详解】解:抛物线y=2(x﹣1)2﹣5的顶点坐标是(1,﹣5).故答案为(1,﹣5).【点睛】本题考查了顶点式对应的顶点坐标,顶点式的理解是解题的关键15、甲.【解析】方差的运用.【分析】方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.由于,因此,甲、乙两种棉花质量较好的是甲.16、【详解】根据题意得:△=(﹣2)2-4×m=4-4m>0,解得m<.故答案为m<.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式:(1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;(3)当△=b2﹣4ac<0时,方程没有实数根.17、1【分析】由在Rt△ABD和Rt△ACE中,∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,可证得△ABD∽△ACE,AD=AB,继而可证得△ABC∽△ADE,然后由相似三角形的对应边成比例,求得答案.【详解】∵∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,∴△ABD∽△ACE,AD=AB,∴∠BAD=∠CAE,AB:AC=AD:AE,∴∠BAC=∠DAE,AB:AD=AC:AE,∴△ABC∽△ADE,∴=2,∵DE=5,∴BC=1.故答案为:1.【点睛】此题考查了相似三角形的判定与性质以及含30度角的直角三角形.此题难度适中,注意掌握数形结合思想的应用.18、1【分析】根据∠A的余弦值列出比例式即可求出AC的长.【详解】解:在Rt△ABC中,,∴AC=故答案为1.【点睛】此题考查是已知一个角的余弦值,求直角三角形的边长,掌握余弦的定义是解决此题的关键.三、解答题(共66分)19、(1)x1=3+2,x2=3-2;(2)x1=-2,x2=4【分析】(1)利用配方法进行求解一元二次方程即可;(2)根据十字相乘法进行求解一元二次方程即可.【详解】解:(1),,解得:;(2),,解得:.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.20、(1)x1=+2,x2=-+2(2)x1=-4,x2=1【分析】(1)运用配方法解一元二次方程;(2)运用因式分解法解一元二次方程.【详解】(1)解得:,.(2)解得:,.【点睛】选择合适的方法解一元二次方程是解题的关键.21、(1)详见解析;(2)10m【分析】(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影;(2)易证△ABC∽△DEF,再根据相似三角形的对应边成比例进行解答即可.【详解】(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE,∵∠ABC=∠DEF=90°,∴△ABC∽△DEF,∴AB:DE=BC:EF,∵AB=5m,BC=3m,EF=6m,∴5:DE=3:6,∴DE=10m.【点睛】本题主要考查相似三角形的应用,解此题的关键在于熟练掌握相似三角形的判定与性质.22、(1);(2)【分析】(1)由可得,再根据函数图像可得,即可得到函数解析式.(2)先求得一次函数解析式,再联立方程组求得点A和点C的坐标,记直线与轴的交点为,求得点坐标为,,即可求得.【详解】解:(1)∵,∴双曲线在二、四象限反比例函数的解析式为(2)由(1)可得,代入可得一次函数的解析式为,联立方程组,得,易求得点为,点为记直线与轴的交点为,在中,当y=0,则x=2,∴点坐标为,,.【点睛】此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积.23、1【分析】根据平行线分线段比例定理得到,即,解得EF=1.【详解】解:∵AD∥BE∥CF,∴,∵=,DE=6,∴,∴EF=1.【点睛】本题的考点是平行线分线段成比例.方法是根据已知条件列出相应的比例式,算出答案即可.24、.【分析】作DH⊥AB于H,根据余弦的定义求出BC,根据正弦的定义求出CD,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【初中生物】真菌-2024-2025学年七年级生物上册同步教学课件(人教版2024)
- 【初中生物】微生物的分布-2024-2025学年七年级生物上册同步备课课件(人教版2024)
- 2024就智能工厂建设与运营的合资合同
- 2024年度清雪业务承包合同
- 2024年度特许经营与加盟合同
- 2024建设工程的项目合作协议合同范本
- 2024个人小额贷款合同
- 2024股份合伙人合同范本
- 2024年工程设计合作伙伴协议
- 2024年度原材料采购担保合同
- 工业自动化系统集成项目验收方案
- 新教科版科学六年级上册全册实验汇总 (超全)
- 王洪图黄帝内经80课时讲稿
- 摊铺机司机班组级安全教育试卷
- 重症肌无力指南
- 限制被执行人驾驶令申请书
- 项目主要施工管理人员情况
- 个人借条电子版模板
- 关于学习“国语普通话”发声亮剑【三篇】
- 玻璃厂应急预案
- 婴幼儿游戏照料(婴幼儿回应性照护课件)
评论
0/150
提交评论