




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列是一元二次方程的是()A. B. C. D.2.已知,则下列各式中不正确的是()A. B. C. D.3.若关于x的一元一次不等式组的解集是xa,且关于y的分式方程有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.64.已知点P在半径为5cm的圆内,则点P到圆心的距离可以是A.4cm B.5cm C.6cm D.7cm5.如图所示,∠APB=30°,O为PA上一点,且PO=6,以点O为圆心,半径为3的圆与PB的位置关系是()A.相离 B.相切C.相交 D.相切、相离或相交6.在Rt△ABC中,AB=6,BC=8,则这个三角形的内切圆的半径是()A.5 B.2 C.5或2 D.2或-17.如图方格纸中每个小正方形的边长均为1,点P、A、C都在小正方形的顶点上.某人从点P出发,沿过A、C、P三点的圆走一周,则这个人所走的路程是()A. B. C. D.不确定8.下列命题正确的个数有()①两边成比例且有一角对应相等的两个三角形相似;②对角线相等的四边形是矩形;③任意四边形的中点四边形是平行四边形;④两个相似多边形的面积比为2:3,则周长比为4:1.A.1个 B.2个 C.3个 D.4个9.在同一平面直角坐标系中,函数与的图象可能是()A. B.C. D.10.如图,点A、B、C均在⊙O上,若∠AOC=80°,则∠ABC的大小是()A.30° B.35° C.40° D.50°11.如图,正方形ABCD和正方形CGFE的顶点C,D,E在同一条直线上,顶点B,C,G在同一条直线上.O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接FH交EG于点M,连接OH.以下四个结论:①GH⊥BE;②△EHM∽△GHF;③﹣1;④=2﹣,其中正确的结论是()A.①②③ B.①②④ C.①③④ D.②③④12.一块圆形宣传标志牌如图所示,点,,在上,垂直平分于点,现测得,,则圆形标志牌的半径为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在直角坐标系中,点,点,过点的直线垂直于线段,点是直线上在第一象限内的一动点,过点作轴,垂足为,把沿翻折,使点落在点处,若以,,为顶点的三角形与△ABP相似,则满足此条件的点的坐标为__________.14.在反比例函数y=﹣的图象上有两点(﹣,y1),(﹣1,y1),则y1_____y1.(填>或<)15.某工厂去年10月份机器产量为500台,12月份的机器产量达到720台,设11、12月份平均每月机器产量增长的百分率为x,则根据题意可列方程_______________16.如图,点A、B分别在y轴和x轴正半轴上滑动,且保持线段AB=4,点D坐标为(4,3),点A关于点D的对称点为点C,连接BC,则BC的最小值为_____.17.将一块弧长为2π的半圆形铁皮围成一个圆锥的侧面(接头处忽略不计),则围成的圆锥的高为____.18.在中,,,,将沿轴依次以点、、为旋转中心顺时针旋转,分别得到图?、图②、…,则旋转得到的图2018的直角顶点的坐标为________.三、解答题(共78分)19.(8分)初三(1)班要从2男2女共4名同学中选人做晨会的升旗手.(1)若从这4人中随机选1人,则所选的同学性别为男生的概率是.(2)若从这4人中随机选2人,求这2名同学性别相同的概率.20.(8分)某小区的居民筹集资金1600元,计划在一块上、下底分别为10m、20m的梯形空地上种花(如图所示).(1)他们在△AMD和△BMC地带上种植太阳花,单价为8元/m2.当△AMD地带种满花后(图中阴影部分)花了160元,请计算种满△BMC地带所需的费用;(2)若△AMB和△DMC地带要种的有玫瑰花和茉莉花可供选择,单价分别为12元/m2和10元/m2,应选择哪一种花,刚好用完所筹集的资金?21.(8分)如图.已知为半圆的直径,,为弦,且平分.(1)若,求的度数:(2)若,,求的长.22.(10分)如图,在平面直角坐标系中,直线y=﹣x+2分别交x轴、y轴于点A、B.点C的坐标是(﹣1,0),抛物线y=ax2+bx﹣2经过A、C两点且交y轴于点D.点P为x轴上一点,过点P作x轴的垂线交直线AB于点M,交抛物线于点Q,连结DQ,设点P的横坐标为m(m≠0).(1)求点A的坐标.(2)求抛物线的表达式.(3)当以B、D、Q,M为顶点的四边形是平行四边形时,求m的值.23.(10分)如图,在△ABC中,∠C=90°,AC=2cm,AB=3cm,将△ABC绕点B顺时针旋转60°得到△FBE,求点E与点C之间的距离.24.(10分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:摸球总次数1020306090120180240330450“和为8”出现的频数210132430375882110150“和为8”出现的频率0.200.500.430.400.330.310.320.340.330.33解答下列问题:(1)如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;(2)如果摸出的2个小球上数字之和为9的概率是,那么x的值可以为7吗?为什么?25.(12分)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点逆时针旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.求证:EF=BC.26.如图,AD、A′D′分别是△ABC和△A′B′C′的中线,且.判断△ABC和△A′B′C′是否相似,并说明理由.
参考答案一、选择题(每题4分,共48分)1、A【分析】用一元二次方程的定义,1看等式,2看含一个未知数,3看未知数次数是2次,4看二次项系数不为零,5看是整式即可.【详解】A、由定义知A是一元二次方程,B、不是等式则B不是一元二次方程,C、二次项系数a可能为0,则C不是一元二次方程,D、含两个未知数,则D不是一元二次方程.【点睛】本题考查判断一元二次方程问题,关键是掌握定义,注意特点1看等式,2看含一个未知数,3看未知数次数是2次,4看二次项数系数不为零,5看是整式.2、C【分析】依据比例的基本性质,将比例式化为等积式,即可得出结论.【详解】A.由可得,变形正确,不合题意;B.由可得,变形正确,不合题意;C.由可得,变形不正确,符合题意;D.由可得,变形正确,不合题意.故选C.【点睛】本题考查了比例的性质,此题比较简单,解题的关键是掌握比例的变形.3、B【解析】先解关于x的一元一次不等式组,再根据其解集是x≤a,得a小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a的值,再求和即可.【详解】解:由不等式组,解得:∵解集是x≤a,∴a<5;由关于的分式方程得得2y-a+y-4=y-1又∵非负整数解,∴a≥-3,且a=-3,a=-1(舍,此时分式方程为增根),a=1,a=3它们的和为1.故选:B.【点睛】本题综合考查了含参一元一次不等式,含参分式方程的问题,需要考虑的因素较多,属于易错题.4、A【分析】直接根据点与圆的位置关系进行判断.【详解】点P在半径为5cm的圆内,点P到圆心的距离小于5cm,所以只有选项A符合,选项B、C、D都不符合;故选A.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.5、C【分析】过O作OC⊥PB于C,根据直角三角形的性质得到OC=3,根据直线与圆的位置关系即可得到结论.【详解】解:过O作OC⊥PB于C,∵∠APB=30°,OP=6,∴OC=OP=3<3,∴半径为3的圆与PB的位置关系是相交,故选:C.【点睛】本题考查直线与圆的位置关系,掌握含30°角的直角三角形的性质是本题的解题关键.6、D【解析】分AC为斜边和BC为斜边两种情况讨论.根据切线定理得过切点的半径垂直于三角形各边,利用面积法列式求半径长.【详解】第一情况:当AC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥AC,OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=2.第二情况:当BC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥BC,OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=.故选:D.【点睛】本题考查了三角形内切圆半径的求法及勾股定理,依据圆的切线性质是解答此题的关键.等面积法是求高度等线段长的常用手段.7、C【分析】根据题意作△ACP的外接圆,根据网格的特点确定圆心与半径,求出其周长即可求解.【详解】如图,△ACP的外接圆是以点O为圆心,OA为半径的圆,∵AC=,AP=,CP=,∴AC2=AP2+CP2∴△ACP是等腰直角三角形∴O点是AC的中点,∴AO=CO=OP=∴这个人所走的路程是故选C.【点睛】此题主要考查三角形的外接圆,解题的关键是熟知外接圆的作法与网格的特点.8、A【分析】利用相似三角形的判定、矩形的判定方法、平行四边形的判定方法及相似多边形的性质分别判断后即可确定正确的选项.【详解】①两边成比例且夹角对应相等的两个三角形相似,故错误;
②对角线相等的平行四边形是矩形,故错误;
③任意四边形的中点四边形是平行四边形,正确;
④两个相似多边形的面积比2:3,则周长比为:,故错误,
正确的有1个,
故选A.【点睛】本题考查命题与定理,解题的关键是掌握相似三角形的判定、矩形的判定方法、平行四边形的判定方法及相似多边形的性质.9、D【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【详解】当时,一次函数经过一、二、三象限,反比例函数经过一、三象限;当时,一次函数经过一、二、四象限,反比例函数经过二、四象限.观察图形可知,只有A选项符合题意.
故选:D.【点睛】本题主要考查了反比例函数的图象和一次函数的图象,熟悉两函数中k和b的符号对函数图象的影响是解题的关键.10、C【分析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC=80°,∴.故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.11、A【分析】由四边形ABCD和四边形CGFE是正方形,得出△BCE≌△DCG,推出∠BEC+∠HDE=90°,从而得GH⊥BE;由GH是∠EGC的平分线,得出△BGH≌△EGH,再由O是EG的中点,利用中位线定理,得HO∥BG且HO=BG;由△EHG是直角三角形,因为O为EG的中点,所以OH=OG=OE,得出点H在正方形CGFE的外接圆上,根据圆周角定理得出∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,从而证得△EHM∽△GHF;设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,由HO∥BG,得出△DHN∽△DGC,即可得出,得到,即a2+2ab-b2=0,从而求得,设正方形ECGF的边长是2b,则EG=2b,得到HO=b,通过证得△MHO∽△MFE,得到,进而得到,进一步得到.【详解】解:如图,∵四边形ABCD和四边形CGFE是正方形,∴BC=CD,CE=CG,∠BCE=∠DCG,在△BCE和△DCG中,∴△BCE≌△DCG(SAS),∴∠BEC=∠BGH,∵∠BGH+∠CDG=90°,∠CDG=∠HDE,∴∠BEC+∠HDE=90°,∴GH⊥BE.故①正确;∵△EHG是直角三角形,O为EG的中点,∴OH=OG=OE,∴点H在正方形CGFE的外接圆上,∵EF=FG,∴∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,∴△EHM∽△GHF,故②正确;∵△BGH≌△EGH,∴BH=EH,又∵O是EG的中点,∴HO∥BG,∴△DHN∽△DGC,设EC和OH相交于点N.设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,即a2+2ab﹣b2=0,解得:a=b=(﹣1+)b,或a=(﹣1﹣)b(舍去),故③正确;∵△BGH≌△EGH,∴EG=BG,∵HO是△EBG的中位线,∴HO=BG,∴HO=EG,设正方形ECGF的边长是2b,∴EG=2b,∴HO=b,∵OH∥BG,CG∥EF,∴OH∥EF,∴△MHO△MFE,∴,∴EM=OM,∴,∴∵EO=GO,∴S△HOE=S△HOG,∴故④错误,故选A.【点睛】本题考查了正方形的性质,以及全等三角形的判定与性质,相似三角形的判定与性质,正确求得两个三角形的边长的比是解决本题的关键.12、B【分析】连结,,设半径为r,根据垂径定理得,在中,由勾股定理建立方程,解之即可求得答案.【详解】连结,,如图,设半径为,∵,,∴,点、、三点共线,∵,∴,在中,∵,,即,解得,故选B.【点睛】本题考查勾股定理,关键是利用垂径定理解答.二、填空题(每题4分,共24分)13、或【分析】求出直线l的解析式,证出△AOB∽△PCA,得出,设AC=m(m>0),则PC=2m,根据△PCA≌△PDA,得出,当△PAD∽△PBA时,根据,,得出m=2,从而求出P点的坐标为(4,4)、(0,-4),若△PAD∽△BPA,得出,求出,从而得出,求出,即可得出P点的坐标为.【详解】∵点A(2,0),点B(0,1),∴直线AB的解析式为y=-x+1∵直线l过点A(4,0),且l⊥AB,∴直线l的解析式为;y=2x-4,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴,∴,设AC=m(m>0),则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴,如图1:当△PAD∽△PBA时,则,则,∵AB=,∴AP=2,∴,∴m=±2,(负失去)∴m=2,当m=2时,PC=4,OC=4,P点的坐标为(4,4),如图2,若△PAD∽△BPA,则,∴,则,∴m=±,(负舍去)∴m=,当m=时,PC=1,OC=,∴P点的坐标为(,1),故答案为:P(4,4),P(,1).【点睛】此题考查了一次函数的综合,用到的知识点是相似三角形和全等三角形的判定与性质、勾股定理、一次函数等,关键是根据题意画出图形,注意点P在第一象限有两个点.14、>【分析】直接将(﹣,y2),(﹣2,y2)代入y=﹣,求出y2,y2即可.【详解】解:∵反比例函数y=﹣的图象上有两点(﹣,y2),(﹣2,y2),∴=4,y2=﹣=2.∵4>2,∴y2>y2.故答案为:>.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15、【分析】根据增长率公式即可列出方程.【详解】解:根据题意可列方程为:,故答案为:.【点睛】本题考查一元二次方程的应用——增长率问题.若连续两期增长率相同,那么a(1+x)2=b,其中a为变化前的量,b为变化后的量,增长率为x.16、1【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于1.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD==5,∵Rt△ABO中,OE=AB=×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于1,故答案为:1.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.17、【分析】根据侧面展开图,求出圆锥的底面半径和母线长,然后利用勾股定理求得圆锥的高.【详解】如下图,为圆锥的侧面展开图草图:∵侧面展开图是弧长为2π的半圆形∴2π=,其中表示圆锥的母线长解得:圆锥侧面展开图的弧长对应圆锥底面圆的周长∴2π=2πr,其中r表示圆锥底面圆半径解得:r=1∴根据勾股定理,h=故答案为:【点睛】本题考查圆锥侧面展开图,公式比较多,建议通过绘制侧面展开图的草图来分析得出公式.18、(8072,0)【分析】利用勾股定理得到AB的长度,结合图形可求出图③的直角顶点的坐标;根据图形不难发现,每3个图形为一个循环组依次循环,且下一组的第一个图形与上一组的最后一个图形的直角顶点重合.【详解】∵∠AOB=90°,OA=3,OB=4,∴AB===5,∴旋转得到图③的直角顶点的坐标为(12,0);根据图形,每3个图形为一个循环组,3+5+4=12,因为2018÷3=672…2所以图2018的直角顶点在x轴上,横坐标为672×12+3+5=8072,所以图2018的顶点坐标为(8072,0),故答案是:(8072,0).【点睛】本题考查了旋转的性质与规律的知识点,解题的关键是根据点的坐标找出规律.三、解答题(共78分)19、(1);(2)P(这2名同学性别相同)=.【分析】(1)用男生人数2除以总人数4即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【详解】解:(1);(2)从4人中随机选2人,所有可能出现的结果有:(男1,男2)、(男1,女1)、(男1,女2)、(男2,男1)、(男2,女1)、(男2,女2)、(女1,男1)、(女1,男2)、(女1,女2)、(女2,男1)、(女2,男2)、(女2,女1),共有12种,它们出现的可能性相同,满足“这2名同学性别相同”(记为事件A)的结果有4种,所以P(A)=.20、(1)640元;(1)茉莉花.【分析】(1)由梯形的性质得到AD平行BC从而得到△AMD和△CMB相似,通过相似的性质即可得到△BMC的面积,即可算出所需费用;(1)通过三角形等高时,得到面积比等于底的比,即可通过△AMD得到△AMB的面积,同理得到△DMC的面积,再分别算出种植两种花时所需的费用,比较大小即可求出结果.【详解】解:(1)∵四边形ABCD是梯形,∴AD∥BC,∴△AMD∽△CMB,∴.∵种满△AMD地带花费160元,∴S△AMD==10(m1),∴S△CMB=4S△AMD=80(m1),∴种满△BMC地带所需的费用为80×8=640(元).(1)∵△AMD∽△CMB,∴===.∵△AMD与△AMB等高,∴,∴S△AMB=1S△AMD=40(m1).同理可求S△DMC=40m1.当△AMB和△DMC地带种植玫瑰花时,所需总费用为160+640+80×11=1760(元),当△AMB和△DMC地带种植茉莉花时,所需总费用为160+640+80×10=1600(元),∴种植茉莉花刚好用完所筹资金.【点睛】本题考查相似三角形的性质、梯形的几何特征,熟知三角形的性质是解题的关键.21、的度数为31°;(2)的长为.【分析】(1)利用角平分线定义以及圆周角定义,进行分析求的度数:(2)由题意AD与BC相交于E,过E作垂线交AB于F,根据勾股定理求出AE,并利用相似比求出AD即可.【详解】解:(1)∵为半圆的直径,,为弦,∴,∵平分,,∴,∴(2)如图AD与BC相交于E,过E作垂线交AB于F,∵平分,AE为公共边,,∴AC=AF,∵,,∴BC=,设EC=EF=x,则EB=-x,BF=4,由勾股定理:,解得x=,即EC=EF=,∴∵为公共角,,∴,∴解得.【点睛】本题结合圆相关性质考查相似三角形,结合角平分线定义以及圆周角定义和勾股定理进行分析判断求值.22、(1)点A坐标为(4,0);(2)y=x2﹣x﹣2;(3)m=2或1+或1﹣.【分析】(1)直线y=﹣x+2中令y=0,即可求得A点坐标;(2)将A、C坐标代入,利用待定系数法进行求解即可;(3)先求出BD的长,用含m的式子表示出MQ的长,然后根据BD=QM,得到关于m的方程,求解即可得.【详解】(1)令y=﹣x+2=0,解得:x=4,所以点A坐标为:(4,0);(2)把点A、C坐标代入二次函数表达式,得,解得:,故:二次函数表达式为:y=x2﹣x﹣2;(3)y=﹣x+2中,令x=0,则y=2,故B(0,2),y=x2﹣x﹣2中,令x=0,则y=-2,故D(0,-2),所以BD=4,设点M(m,﹣m+2),则Q(m,m2﹣m﹣2),则MQ=|(m2﹣m﹣2)-(﹣m+2)|=|m2﹣m﹣4|以B、D、Q,M为顶点的四边形是平行四边形时,则:MQ=BD=4,即|m2﹣m﹣4|=4,当m2﹣m﹣4=-4时,解得:m=2或m=0(舍去);当m2﹣m﹣4=4时,解得m=1±,故:m=2或1+或1-.【点睛】本题考查了待定系数法求函数解析式,函数图象与坐标轴的交点,平行四边形的性质,解一元
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市绿化工程采购补充协议书
- 垃圾填埋场调查与环保治理合作协议
- 常州二手房买卖合同签订及贷款服务协议
- 车辆租赁安全责任划分与损害赔偿协议
- 常融离婚协议书中的子女医疗费用承担协议
- 体育场馆空地租赁运营管理协议
- 智能家居产品全球总代理授权协议
- 城市绿化工程采购与养护管理合同
- 机场免税店摊位租赁与销售代理合同
- 铲车驾驶员职业健康保障聘用协议书模板
- 2025年网络与信息安全法律知识考试试题及答案
- 货物实时监控系统行业跨境出海项目商业计划书
- 2024年吐鲁番市高昌区招聘社区工作者笔试真题
- 糖尿病中医健康教育讲座
- 地《巴西》第一课时教学设计-2024-2025学年七年级地理下册(人教版2024)
- 27万吨年丙烯腈项目初步设计说明书
- 装配式建筑概论课件:BIM技术在装配式建筑中的应用
- 2025年高考作文预测范文10篇
- 四川省九师联盟2025届高三仿真模拟卷物理试卷及答案(HG)
- 乙状结肠癌试题及答案
- 2024年全球及中国电动宽体矿卡行业头部企业市场占有率及排名调研报告
评论
0/150
提交评论