




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁2.二次根式的值是()A.﹣3 B.3或﹣3 C.9 D.33.下列几组数中,为勾股数的是()A.4,5,6 B.12,16,18C.7,24,25 D.0.8,1.5,1.74.如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE,若∠A=30°,AB=AC,则∠BDE的度数为()A.45 B.52.5 C.67.5 D.755.已知中,比它相邻的外角小,则为A. B. C. D.6.下列关系式中,不是的函数的是()A. B. C. D.7.如图,是的中线,E,F分别是和延长线上的点,且,连接,,下列说法:①和面积相等;②;③;④;⑤和周长相等.其中正确的个数有()A.1个 B.2个 C.3个 D.4个8.等于()A.2 B.-2 C.1 D.09.如果点和点关于轴对称,则,的值为()A., B.,C., D.,10.解分式方程,下列四步中,错误的一步是()A.方程两边分式的最简公分母是x2-1B.方程两边都乘以(x2一1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程得:x=1D.原方程的解为:x=1二、填空题(每小题3分,共24分)11.把无理数,,﹣表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是_____.12.如果关于的不等式只有4个整数解,那么的取值范围是________________________。13.已知:,则_______________14.下面是一个按某种规律排列的数表:第1行1第2行2第3行第4行……那么第n(,且n是整数)行的第2个数是________.(用含n的代数式表示)15.如图,四边形ABCD是正方形,AE⊥BE于点E,且AE=3,BE=4,则阴影部分的面积是_____.16.把直线y=﹣x向下平移_____个单位得到直线y=﹣x﹣1.17.如图,已知△ABC中,AB=AC,AD是∠BAC的平分线,AE是∠BAC的外角平分线,ED∥AB交AC于点G,下列结论:①BD=DC;②AE∥BC;③AE=AG;④AG=DE.正确的是_____(填写序号)18.若是关于的完全平方式,则__________.三、解答题(共66分)19.(10分)(1)在如图所示的平面直角坐标系中表示下面各点:A(0,3);B(5,0);C(3,﹣5);D(﹣3,﹣5);E(3,5);(2)A点到原点的距离是;(3)将点C向x轴的负方向平移6个单位,它与点重合;(4)连接CE,则直线CE与y轴是什么位置关系;(5)点D分别到x、y轴的距离是多少.20.(6分)先化简,再求值:,在a=±2,±1中,选择一个恰当的数,求原式的值.21.(6分)某同学碰到这么一道题“分解因式:a4+4”,不会做,去问老师,老师说:“能否变成平方差的形式?在原式加上4a2,再减去4a2,这样原式化为(a4+4a2+4)﹣4a2,……”,老师话没讲完,此同学就恍然大悟,他马上就做好了此题.你会吗?请完成此题.22.(8分)欧几里得是古希腊著名数学家、欧氏几何学开创者.下面问题是欧几里得勾股定理证法的一片段,同学们,让我们一起来走进欧几里得的数学王国吧!已知:在Rt△ABC,∠A=90°,分别以AB、AC、BC为边向外作正方形,如图,连接AD、CF,过点A作AL⊥DE分别交BC、DE于点K、L.(1)求证:△ABD≌△FBC(2)求证:正方形ABFG的面积等于长方形BDLK的面积,即:23.(8分)如图,在平行四边形ABCD中,BCD的平分线与BA的延长线相交于点E,求证:BE=BC.24.(8分)为了解学生课余活动情况.晨光中学对参加绘画,书法,舞蹈,乐器这四个课外兴趣小组的人员分布情况进行调查.并报据收集的数据绘制了两幅不完整的统计阁.请根据图中提供的信息.解答下面的问题:(1)此次共调查了多少名同学?(2)将条形图补充完整,并计算扇形统计图中书法部分的圆心角的度数.(3)如果该校共有300名学生参加这4个课外兴趣小组,而每位教师最多只能辅导本组的20名学生,估计乐器兴趣小组至少需要准备多少名教师?25.(10分)△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)△ABC关于y轴对称图形为△A1B1C1,画出△A1B1C1的图形.(2)求△ABC的面积.(3)若P点在x轴上,当BP+CP最小时,直接写出BP+CP最小值为.26.(10分)计划新建的北京至张家口铁路全长180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的倍,用时比普通快车少20分钟.求高铁列车的平均行驶速度.
参考答案一、选择题(每小题3分,共30分)1、A【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选A.【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.2、D【分析】本题考查二次根式的化简,.【详解】.故选D.【点睛】本题考查了根据二次根式的意义化简.二次根式化简规律:当a≥0时,=a;当a≤0时,=﹣a.3、C【分析】根据勾股数的定义:满足的三个正整数,称为勾股数解答即可.【详解】解:A、42+52≠62,不是勾股数;B、122+162≠182,不是勾股数;C、72+242=252,是勾股数;D、0.82+1.52=1.72,但不是正整数,不是勾股数.故选:C.【点睛】本题考查勾股数,解题的关键是掌握勾股数的定义,特别注意这三个数除了要满足,还要是正整数.4、C【解析】试题分析:根据AB=AC,利用三角形内角和定理求出∠ABC的度数,再利用等腰三角形的性质和三角形内角和定理求出∠DBC=30°,然后即可求出∠BDE的度数:∵AB=AC,∴∠ABC=∠ACB.∵∠A=30°,∴∠ABC=∠ACB=.∵以B为圆心,BC长为半径画弧,∴BE=BD=BC.∴∠BDC=∠ACB=75°.∴∠CBD.∴∠DBE=75°30°=45°.∴∠BED=∠BDE=.故选C.考点:1.等腰三角形的性质;2.三角形内角和定理.5、B【解析】设构建方程求出x,再利用三角形的内角和定理即可解决问题.【详解】解:设.
由题意:,
解得,
,
,
故选:B.
【点睛】考查三角形的内角和定理,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.6、D【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定是否是函数.【详解】解:A、,当x取值时,y有唯一的值对应,故选项不符合;B、,当x取值时,y有唯一的值对应,故选项不符合;C、,当x取值时,y有唯一的值对应,故选项不符合;;D、,当x取值时,如x=1,y=1或-1,故选项符合;故选:D.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.7、C【分析】由三角形中线的定义可得,根据等底等高的三角形的面积相等判断出①正确,然后利用“边角边”证明和全等,判断出②正确,根据②得到,进而证明,判断出③正确,由为任意三角形,判断④⑤错误,问题得解.【详解】解:是的中线,,∵和底边BD,CD上高相同,和面积相等,故①正确;在和中,,,故②正确;,,故③正确;由为任意三角形,故④⑤错误.故选:.【点睛】本题考查了等底等高的三角形的面积相等,全等三角形的判定与性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.8、C【解析】根据任何非0数的0次幂都等于1即可得出结论.【详解】解:故选C.【点睛】此题考查的是零指数幂的性质,掌握任何非0数的0次幂都等于1是解决此题的关键.9、A【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数代入计算可解答.【详解】解:由题意得:,解得:a=6,b=4,故答案为:A.【点睛】本题考查的知识点是关于x轴对称的点的坐标之间的关系,当所求的坐标是关于x轴对称时,原坐标的横坐标不变,纵坐标为其相反数;当所求的坐标是关于y轴对称时,原坐标的纵坐标不变,横坐标为其相反数;当所求的坐标是关于原点对称时,原坐标的横、纵坐标均变为其相反数.10、D【分析】分式方程两边乘以最简公分母,去分母转化为整式方程,求出整式方程的解,经检验即可得到分式方程的解.【详解】解:分式方程的最简公分母为,故A选项正确;方程两边乘以(x−1)(x+1),得整式方程2(x−1)+3(x+1)=6,故B选项正确;解得:x=1,故C选项正确;
经检验x=1是增根,分式方程无解.故D选项错误;
故选D.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.二、填空题(每小题3分,共24分)11、【分析】由数轴先判断出被覆盖的无理数的范围,再确定出,,–的范围即可得出结论.【详解】解:由数轴知,被墨迹覆盖住的无理数在3到4之间,∵9<11<16,∴3<<4,∵4<5<9,∴2<<3,∵1<3<4,∴1<<2,∴–2<–<–1,∴被墨迹覆盖住的无理数是,故答案为.【点睛】此题主要实数与数轴,算术平方根的范围,确定出,,–的范围是解本题的关键.12、−5<a⩽−.【解析】首先利用不等式的基本性质解不等式组,再从不等式的解集中找出适合条件的整数解,在确定字母的取值范围即可.【详解】,由①得:x<21,由②得:x>2−3a,不等式组的解集为:2−3a<x<21∵不等式组只有4个整数解为20、19、18、17∴16⩽2−3a<17∴−5<a⩽−.故答案为:−5<a⩽−.【点睛】此题考查一元一次不等式组的整数解,解题关键在于掌握不等式组的运算法则.13、-2【分析】根据幂的乘方、负指数幂及同底数幂的运算公式即可求解.【详解】∵∴故∴3-3x+2x-3=2,解得x=-2,故填:-2.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式及运用.14、【分析】根据每一行的最后一个数的被开方数是所在的行数的平方,写出第行的最后一个数的平方是,据此可写出答案.【详解】第2行最后一个数字是:,第3行最后一个数字是:,第4行最后一个数字是:,第行最后一个数字是:,第行第一个数字是:,第行第二个数字是:,故答案为:【点睛】本题考查了规律型-数字变化,解题的关键是确定每一行最后一个数字.15、1【分析】由题意可得△ABE是直角三角形,根据勾股定理求出其斜边长度,即正方形边长,再根据割补法求阴影面积即可.【详解】∵AE⊥BE,∴△ABE是直角三角形,∵AE=3,BE=4,∴AB===5,∴阴影部分的面积=S正方形ABCD﹣S△ABE=52﹣×3×4=25﹣6=1.故答案为:1.【点睛】本题考查了勾股定理的简单应用,以及割补法求阴影面积,熟练掌握和运用勾股定理是解答关键.16、1.【分析】直接根据“上加下减”的原则即可解答.【详解】解:∵0﹣(﹣1)=1,∴根据“上加下减”的原则可知,把直线y=﹣x向下平移1个单位得到直线y=﹣x﹣1.故答案为:1.【点睛】本题考查一次函数的图像与几何变换,熟知图像平移的法则是解题的关键.17、①②④【分析】根据等腰三角形的性质与判定、平行线的性质分别对每一项进行分析判断即可.【详解】解:①∵△ABC中,AB=AC,AD是∠BAC的平分线,∴BD=DC,故本选项正确,②∵△ABC中,AB=AC,AD是∠BAC的平分线,∴AD⊥BC,∴AE∥BC,故本选项正确,③∵AE∥BC,∴∠E=∠EDC,∵ED∥AB,∴∠B=∠EDC,∠AGE=∠BAC,∴∠B=∠E,∵∠B不一定等于∠BAC,∴∠E不一定等于∠AGE,∴AE不一定等于AG,故本选项错误,④∵ED∥AB,∴∠BAD=∠ADE,∵∠CAD=∠BAD,∴∠CAD=∠ADE,∴AG=DG,∵AE∥BC,∴∠EAG=∠C,∵∠B=∠E,∠B=∠C,∴∠E=∠C,∴∠EAG=∠E,∴AG=EG,∴AG=DE,故答案为:①②④【点睛】此题考查了等腰三角形的性质与判定,用到的知识点是等腰三角形的性质与判定、平行线的性质,关键是熟练地运用有关性质与定理进行推理判断.18、1或-1【解析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案为-1或1.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.三、解答题(共66分)19、(1)作图见解析;(2)1;(1)D;(4)平行;(5)点D到x轴的距离是5;点D到y轴的距离是1【解析】(1)根据点的坐标直接描点即可;(2)根据A点坐标可得出A点在x轴上,即可得出A点到原点的距离;
(1)根据点的平移的性质得出平移后的位置;
(4)利用图形性质得出直线CE与坐标轴的位置关系;
(5)利用D点的横纵坐标得出点D分别到x、y轴的距离.【详解】解:(1)描点如下:(2)如图所示:A点到原点的距离是1;故答案为:1(1)将点C向x轴的负方向平移6个单位,它与点D重合;故答案为:D(4)如图所示:CE∥y轴;(5)点D分别到x、y轴的距离分别是5和1.20、,【分析】对括号内的分式通分化简、用平方差公式因式分解,再根据整式的乘法和整式的除法法则进行计算,再代入的值进行计算.【详解】当时,原式.【点睛】本题考查的是分式的混合运算-化简求值,解题的关键是熟练掌握分式的混合运算法则.21、见解析【分析】先利用“配方法”分解因式,然后根据平方差公式因式分解即可解答.【详解】解:a4+4=(a4+4a2+4)﹣4a2=(a2+2)2﹣(2a)2=(a2+2+2a)(a2+2﹣2a)=(a2+2a+2)(a2﹣2a+2).【点睛】本题考查了配方法分解因式,公式法分解因式,掌握因式分解的方法是解题的关键.22、(1)见解析;(2)见解析【分析】(1)根据正方形的性质可得AB=FB,BD=BC,∠FBA=∠CBD=90°,从而证出∠FBC=∠ABD,然后利用SAS即可证出结论;(2)根据平行线之间的距离处处相等可得,然后根据全等三角形的性质可得,从而证出结论.【详解】(1)证明:∵四边形ABFG、四边形BDEC是正方形∴AB=FB,BD=BC,∠FBA=∠CBD=90°∴∠FBA+∠ABC=∠CBD+∠ABC即∠FBC=∠ABD在△ABD和△FBC中∴△ABD≌△FBC(SAS)(2)∵GC∥FB,AL∥BD∴,∵△ABD≌△FBC∴∴【点睛】此题考查的是正方形的性质、全等三角形的判定及性质和平行线公理,掌握正方形的性质、全等三角形的判定及性质和平行线之间的距离处处相等是解决此题的关键.23、证明见解析.【分析】利用平行四边形的性质和角平分线的定义得出∠BCE=∠E,根据等角对等边即可得出结论.【详解】证明:∵四边形ABCD为平行四边形,∴BE∥CD,∴∠E=∠ECD,∵BCD的平分线与BA的延长线相交于点E,∴∠BCE=∠ECD,∴∠BCE=∠E,∴BE=BC.【点睛】本题考查等腰三角形的判定定理,平行四边形的性质.一半若要证明两条线段相等,而且这两条线段在同一三角形中,可用“等角对等边证明”.24、(1)200;(2)图详见解析,36°;(3)1.【分析】(1)绘画组的人数有90人,所占比例为41%,故总数=某项人数÷所占比例;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 土地经济学课程总结
- 2025年办公室工作方案
- 管理学案例介绍
- 卫生行业护理员技能培训
- 2025年应急消防演习工作方案
- 伺服系统与工业机器人课件第7章 伺服系统的应用
- 新人教部编本2025年秋六班级上册语文教学方案及教学进度
- 2024年四月份教育质量评估中的《陈情表》表现
- 管理情绪的绘本故事
- 2025年八年英语教学工作方案演讲稿
- 人力资源社会保障部所属单位招聘真题2024
- 保定雄安新区容城县招聘事业单位真题2024
- 2025年广西壮族自治区南宁市青秀区中考一模英语试题(含答案)
- 2025-2030中国手术包行业市场发展分析及投资前景预测研究报告
- GB/T 10810.2-2025眼镜镜片第2部分:渐变焦
- 2024年上海市《辅警招聘考试必刷500题》考试题库(典优)
- 2025年暖通空调考试试题及答案
- AI技术在舞蹈实训空间设计中的创新应用
- 《中国传统民居建筑特点》课件
- 顶板管理知识培训课件
- 盘扣式支架现浇箱梁安全专项施工方案
评论
0/150
提交评论