版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列命题中,真命题的个数是()①若,则;②的平方根是-5;③若,则;④所有实数都可以用数轴上的点表示.A.1个 B.2个 C.3个 D.4个2.把多项式分解因式,结果正确的是()A. B.C. D.3.如图,在中,边的中垂线与的外角平分线交于点,过点作于点,于点.若,.则的长度是()A.1 B.2 C.3 D.44.在分式中,若,都扩大为原来的2倍,则所得分式的值()A.不变 B.是原来的2倍 C.是原来的4倍 D.无法确定5.某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:读书时间(小时)7891011学生人数610987则该班学生一周读书时间的中位数和众数分别是()A.9,8 B.9,9 C.9.5,9 D.9.5,86.如图:若函数与的图象交于点,则关于的不等式的解集是()A. B. C. D.7.若一个多边形的每个外角都等于60°,则它的内角和等于()A.180° B.720° C.1080° D.540°8.如图,已知,在的平分线上有一点,将一个60°角的顶点与点重合,它的两条边分别与直线,相交于点,.下列结论:(1);(2);(3);(4),,则;其中正确的有().A.1个 B.2个 C.3个 D.4个9.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点,若AB=6,BC=4,△PBC的周长等于()A.10 B.12 C.14 D.1610.如图,直线AB∥CD,一个含60°角的直角三角板EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M.若∠AHG=50°,则∠FMD等于()A.10° B.20° C.30° D.50°11.如图,以两条直线,的交点坐标为解的方程组是()A. B.C. D.12.某地区连续10天的最高气温统计如下表,则该地区这10天最高气温的众数是()最高气温(°C)1819202122天数12232A.20 B.20.5 C.21 D.22二、填空题(每题4分,共24分)13.已知一直角三角形的木板,三边的平方和为1800,则斜边长为.14.如图,点的坐标为,点的坐标为,点的坐标为,点的坐标为,小明发现:线段与线段存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是_____________.15.已知一个正多边形的内角和为1080°,则它的一个外角的度数为_______度.16.如图,在□ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动_____秒时,以点P、Q、E、F为顶点的四边形是平行四边形.17.将点P1(m,1)向右平移3个单位后得到点P2(2,n),则m+n的值为_____.18.将一副学生用三角板(即分别含30°角、45°角的直角三角板)按如图所示方式放置,则∠1=____°.三、解答题(共78分)19.(8分)如图,在四边形中,,连接,,,且平分,.(1)求的度数;(2)求的长.20.(8分)如图1,在△ABC中,∠ACB=90°,AC=BC,点D为BC的中点,AB=DE,BE∥AC.(1)求证:△ABC≌△DEB;(1)连结AD、AE、CE,如图1.①求证:CE是∠ACB的角平分线;②请判断△ABE是什么特殊形状的三角形,并说明理由.21.(8分)如图,已知网格上最小的正方形的边长为(长度单位),点在格点上.(1)直接在平面直角坐标系中作出关于轴对称的图形(点对应点,点对应点);(2)的面积为(面积单位)(直接填空);(3)点到直线的距离为(长度单位)(直接填空);22.(10分)先化简,然后从﹣1,0,2中选一个合适的x的值,代入求值.23.(10分)某初级中学师生开展“缅怀革命先烈,传承红色基因”为主题的研学活动.师生乘坐大巴先行出发.通讯员15分钟后开小汽车出发,行驶过程发现某处风景优美,停下欣赏拍照15分钟,再以相同速度继续行驶,并提前6分钟到达目的地.假设两车匀速行驶.两车离出发点的距离s与的函数关系如图,试根据图象解决下列问题:(1)大巴车的速度千米/小时,小汽车的速度千米/小时;(2)求大巴车出发后几个小时被小汽车第二次追上?24.(10分)如图,已知,,.求证:.25.(12分)在△ABC中,∠ACB=2∠B,(1)如图①,当∠C=90°,AD为∠ABC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.请证明AB=AC+CD;(2)①如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?请直接写出你的结论,不要求证明;②如图③,当∠C≠90°,AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想并证明.26.如图,某校准备在校内一块四边形ABCD草坪内栽上一颗银杏树,要求银杏树的位置点P到边AB,BC的距离相等,并且点P到点A,D的距离也相等,请用尺规作图作出银杏树的位置点P(不写作法,保留作图痕迹).
参考答案一、选择题(每题4分,共48分)1、B【分析】根据各个选项中的说法可以判断是否为真命题,从而可以解答本题.【详解】①若,则,真命题;②的平方根是,假命题;③若,则,假命题;④所有实数都可以用数轴上的点表示,真命题.故答案为:B.【点睛】本题考查了真命题的定义以及判断,根据各个选项中的说法可以判断是否为真命题是解题的关键.2、C【解析】试题分析:首先进行提取公因式,然后利用平方差公式进行因式分解.原式=2(-4)=2(x+2)(x-2).考点:因式分解.3、A【分析】连接AP、BP,如图,根据线段垂直平分线的性质可得AP=BP,根据角平分线的性质可得PE=PD,进一步即可根据HL证明Rt△AEP≌Rt△BDP,从而可得AE=BD,而易得CD=CE,进一步即可求得CE的长.【详解】解:连接AP、BP,如图,∵PQ是AB的垂直平分线,∴AP=BP,∵CP平分∠BCE,,,∴PE=PD,∴Rt△AEP≌Rt△BDP(HL),∴AE=BD,∵CD=,CE=,PE=PD,∴CD=CE,设CE=CD=x,∵,,∴,解得:x=1,即CE=1.故选:A.【点睛】本题考查了线段垂直平分线的性质、角平分线的性质、直角三角形全等的判定和勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.4、A【分析】根据分式的基本性质:分式的分子和分母同时乘以(除以)同一个不为0的整式,分式的值不发生变化.【详解】解:故选:A.【点睛】本题主要考查的是分式的基本性质,掌握分式的基本性质以及正确的运算是解题的关键.5、A【分析】根据表格中的数据可知该班有学生40人,根据中位数定义可求得中位数,再根据读书时间最多的人数根据众数的概念即可求得众数.【详解】由表格可得,该班学生一周读书时间的中位数和众数分别是:9、8,故选A.【点睛】本题考查了众数、中位数,明确题意,熟练掌握中位数、众数的概念以及求解方法是解题的关键.6、B【分析】首先得出的值,再观察函数图象得到,当时,一次函数的图象都在一次函数的图象的上方,由此得到不等式的解集.【详解】∵函数与的图象相交于点,
∴,
解得:,
观察函数图象得到:关于的不等式的解集是:.
故选:B.【点睛】本题考查一次函数与一元一次不等式、一次函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.7、B【解析】设多边形的边数为n,∵多边形的每个外角都等于60°,∴n=360°÷60°=6,∴这个多边形的内角和=(6﹣2)×180°=720°.故选B点睛:由一个多边形的每个外角都等于60°,根据n边形的外角和为360°计算出多边形的边数n,然后根据n边形的内角和定理计算即可.8、A【分析】过点作于点,于点,根据的平分线上有一点,得,,从而得,,;当,在射线,上时,通过证明,得;当,在直线,射线上时,通过,得;当,在直线、上时,得,即可完成求解.【详解】过点作于点,于点∵平分又∵∴,,∴∴,,①当,在射线,上时∴∵,∴∴,∴.②如图,当,在直线,射线上时∴;③如图,当,在直线、上时∴综上:②③④错误;故选:A.【点睛】本题考查了角平分线、全等三角形、直角三角形两锐角互余的知识;解题的关键是熟练掌握角平分线、全等三角形的性质,从而完成求解.9、A【分析】先根据等腰三角形的性质得出AC=AB=6,再根据线段垂直平分线的性质得出AP=BP,故AP+PC=AC,由此即可得出结论.【详解】解:∵△ABC中,AB=AC,AB=6,∴AC=6,∵AB的垂直平分线交AC于P点,∴BP+PC=AC,∴△PBC的周长=(BP+PC)+BC=AC+BC=6+4=1.故选:A.【点睛】本题考查的是线段垂直平分线的性质,三角形的周长计算方法,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.10、B【解析】试题解析:如图:∵直线AB∥CD,∠AHG=50°,∴∠AKG=∠XKG=50°.∵∠CKG是△KMG的外角,∴∠KMG=∠CKG-∠G=50°-30°=20°.∵∠KMG与∠FMD是对顶角,∴∠FMD=∠KMG=20°.故选B.考点:平行线的性质.11、C【分析】两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【详解】直线l1经过(2,3)、(0,−1),设直线l1为y=kx+b(k≠0)代入得,解得∴l1函数解析式为y=2x−1;直线l2经过(2,3)、(0,1),设直线l2为y=px+q(p≠0)代入得,解得∴l2函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:.故选:C.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.12、C【分析】根据众数的定义求解即可.【详解】∵21出现的次数最多,∴则该地区这10天最高气温的众数是21;故答案选C.【点睛】此题考查了众数,解题的关键是正确理解题意,抓住题目中的关键语句.二、填空题(每题4分,共24分)13、1.【详解】∵在直角三角形中斜边的平方等于两直角边的平方和,又∵已知三边的平方和为1800,则斜边的平方为三边平方和的一半,即斜边的平方为=900,∴斜边长==1.故答案是:1.14、或【分析】分点A的对应点为C或D两种情况考虑:①当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,点E即为旋转中心;②当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,点M即为旋转中心.此题得解.【详解】解:①当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,如图1所示,∵B点的坐标为(4,2),D点的坐标为(4,),∴E点的坐标为(2,0);②当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,如图2所示,∵B点的坐标为(4,2),C点的坐标为(6,2),∴M点的坐标为(5,3).综上所述:这个旋转中心的坐标为(2,0)或(5,3).故答案为:或.【点睛】本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键.15、45【分析】利用n边形内角和公式求出n的值,再结合多边形的外角和度数为即可求出一个外角的度数.【详解】解:设这个正多边形为正n边形,根据题意可得解得所以该正多边形的一个外角的度数为45度.故答案为:45.【点睛】本题考查了多边形内角和与外角和,灵活利用多边形的内角和与外角和公式是解题的关键.16、3或1【分析】由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=BC=AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案为3或1.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.17、1【分析】根据平移规律进行计算即可.【详解】∵点P1(m,1)向右平移3个单位后得到点P2(2,n),∴m+3=2,n=1,∴m=-1,∴m+n=-1+1=1.故答案为:1.【点睛】本题考查了点的坐标平移规律,熟练掌握平移规律是解题的关键.18、1.【分析】先根据三角形的内角和得出∠2=180°−90°−30°=60°,再利用对顶角相等可得∠3=∠2=60°,再根据三角形外角的性质得到∠1=45°+∠3,计算即可求解.【详解】如图:由三角形的内角和得∠2=180°﹣90°﹣30°=60°,则∠3=∠2=60°,则∠1=45°+∠3=1°.故答案为:1.【点睛】本题主要考查三角形的外角的性质,解题的关键是掌握三角形的内角和定理和三角形外角的性质.三、解答题(共78分)19、(1)30°;(2)8【分析】(1)利用三角形内角和公式求出,再由平分,得出.(2)在上截取,连接,可证,根据数量关系证得为等边三角形,得到,从而求得.【详解】.解:(1)在中,∵,,∴.∵平分,∴.(2)如图,在上截取,连接,∵,,,∴.∴,,∵,∴∴,,∴,∵,∴为等边三角形.∴,∴.【点睛】本题考查了等边三角形的性质、全等三角形的判定及性质,通过作辅助线构造全等三角形是解题的关键.20、(1)详见解析;(1)①详见解析;②△ABE是等腰三角形,理由详见解析.【解析】(1)由AC//BE,∠ACB=90°可得∠DBE=90°,由AC=BC,D是BC中点可得AC=BD,利用HL即可证明△ABC≌△DEB;(1)①由(1)得BE=BC,由等腰直角三角形的性质可得∠BCE=45°,进而可得∠ACE=45°,即可得答案;②根据SAS可证明△ACE≌△DCE,可得AE=DE,由AB=DE可得AE=AB即可证明△ABE是等腰三角形.【详解】(1)∵∠ACB=90°,BE∥AC∴∠CBE=90°∴△ABC和△DEB都是直角三角形∵AC=BC,点D为BC的中点∴AC=BD又∵AB=DE∴△ABC≌△DEB(H.L.)(1)①由(1)得:△ABC≌△DEB∴BC=EB又∵∠CBE=90°∴∠BCE=45°∴∠ACE=90°-45°=45°∴∠BCE=∠ACE∴CE是∠ACB的角平分线②△ABE是等腰三角形,理由如下:在△ACE和△DCE中∴△ACE≌△DCE(SAS).∴AE=DE又∵AB=DE∴AE=AB∴△ABE是等腰三角形【点睛】本题考查全等三角形的判定与性质及等腰三角形的判断与性质,熟练掌握判定定理是解题关键.21、(1)(图略);(2);(3).【解析】(1)分别作出点A和点C关于y轴的对称点,再与点B首尾顺次连接即可得;(2)利用割补法求解可得;(3)根据•A1C1•h=S△ABC且A1C1=1求得h的值即可得.【详解】(1)如图所示,△A1BC1即为所求.(2)△ABC的面积为4×4-×2×4-×1×2-×4×3=1,故答案为1.(3)∵A1C1==1,∴•A1C1•h=S△ABC,即×1×h=1,解得h=2,∴点B到直线A1C1的距离为2,故答案为2.【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应位置.22、-.【分析】先把分式除法转换成乘法进行约分化简,然后再找出分式的最小公分母通分进行化简求值,在代入求值时要保证每一个分式的分母不能为1【详解】解:原式=-=-===-.当x=-1或者x=1时分式没有意义所以选择当x=2时,原式=.【点睛】分式的化简求值是此题的考点,需要特别注意的是分式的分母不能为1.23、(1)40,60;(2)大巴车出发后1.5小时被小汽车第二次追上.【分析】(1)由题意,可得大巴车全程所用时间,则大巴车速度可求,分析题意可得通讯员完成全程所有时间,则可求小汽车速度;(2)由题意,可得C、D两点坐标,分别求出CD和OE解析式,求交点坐标即可.【详解】(1)由题意,大巴车运行全程72千米,用时1.8小时,则大巴车速度为:千米/小时,由题意小汽车运行时间为小时,则小汽车速度为千米/小时,故答案为40,60(2)由题意得D(1.7,72)C(1.1,36)设CD的解析式为S2=kt+b∴解得:∴CD的解析式为S2=60t-30直线OE的解析式为:S1=40t∴60t-30=40t解得:t=1.5答:大巴车出发后1.5小时被小汽车第二次追上.【点睛】本题考查一次函数实际应用中的形成问题,解答关键是应用待定系数法求解析式.24、证明见解析.【分析】根据题意证明即可求解.【详解】证明:∵∴,即:在和中∴∴【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定方法.25、(1)证明见解析;(2)①AB=AC+CD;②AC+AB=CD,证明见解析.【分析】(1)首先得出△AED≌△ACD(SAS),即可得出∠B=∠BDE=45°,求出BE=DE=CD,进而得出答案;(2)①首先得出△AED≌△ACD(SAS),即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数据中心设备减震施工方案
- 初中学校工会促进师生关系工作总结
- 工程承包合同协议书(2篇)
- 七年级新生班级建设方案
- 小孩做家务协议书(2篇)
- POS机追偿协议(可直接使用)
- 老年人健康管理合作协议书
- 绿化养护作业安全执行方案
- 南充-PEP-2024年小学四年级上册英语第三单元寒假试卷
- 定向钻在通信设施铺设中的方案
- 《影视光线艺术与照明技巧》word版本
- 大柳塔煤矿井下移动设备管理办法
- 我家乡-湖北钟祥教学课件
- 地球仪与地图七年级上册 科学知识精讲与典例提升 (浙教版)
- 国家职业类别1-6类明细表
- 三级医院急诊科护理质量评价标准
- 小学、幼儿园与属地卫生医疗部门联动机制集合9篇
- 工商银行全国地区码
- 纤支镜检查知情同意书
- 社保信息变更申请表模板
- 动土作业安全培训考试
评论
0/150
提交评论