2022-2023学年浙江省绍兴市名校数学八年级第一学期期末质量检测模拟试题含解析_第1页
2022-2023学年浙江省绍兴市名校数学八年级第一学期期末质量检测模拟试题含解析_第2页
2022-2023学年浙江省绍兴市名校数学八年级第一学期期末质量检测模拟试题含解析_第3页
2022-2023学年浙江省绍兴市名校数学八年级第一学期期末质量检测模拟试题含解析_第4页
2022-2023学年浙江省绍兴市名校数学八年级第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A. B.2 C.5 D.42.下列命题是真命题的是()A.三角形的三条高线相交于三角形内一点B.等腰三角形的中线与高线重合C.三边长为的三角形为直角三角形D.到线段两端距离相等的点在这条线段的垂直平分线上3.下列多项式能用完全平方公式进行因式分解的是()A.a2﹣1 B.a2+4 C.a2+2a+1 D.a2﹣4a﹣44.将一副三角板按图中方式叠放,那么两条斜边所夹锐角的度数是()A.45°B.75°C.85°D.135°5.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个 B.3个 C.4个 D.5个6.周长38的三角形纸片(如图甲),,将纸片按图中方式折叠,使点与点重合,折痕为(如图乙),若的周长为25,则的长为()A.10 B.12 C.15 D.137.朱锦汶同学学习了全等三角形后,利用全等三角形绘制出了下面系列图案,第(1)个图案由2个全等的三角形组成,第(2)个图案由4个全等的三角形组成,(3)个图案由7个全等的三角形组成,(4)个图案由12个全等的三角形组成.则第(8)个图案中全等三角形的个数为()A.52 B.136 C.256 D.2648.如图,在中,点是内一点,且点到三边的距离相等.若,则的度数为()A. B. C. D.9.“2019武汉军运会”部分体育项目的示意图中是轴对称图形的是()A. B. C. D.10.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A. B. C. D.11.如图所示.在△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,若AB=6cm,则△DEB的周长为()A.12cm B.8cm C.6cm D.4cm12.下列四个图形中轴对称图形的个数是()A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)13.分解因式:__________.14.如图,已知,添加下列条件中的一个:①,②,③,其中不能确定≌△的是_____(只填序号).15.把分式与进行通分时,最简公分母为_____.16.已知,,则______.17.三角形三条中线交于一点,这个点叫做三角形的_____.18.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为_____.三、解答题(共78分)19.(8分)如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).(1)求直线AB的解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.20.(8分)我们知道,有一个内角是直角的三角形是直角三角形,其中直角所在的两条边叫直角边,直角所对的边叫斜边(如图①所示).数学家还发现:在一个直角三角形中,两条直角边长的平方和等于斜边长的平方。即如果一个直角三角形的两条直角边长度分别是和,斜边长度是,那么。(1)直接填空:如图①,若a=3,b=4,则c=;若,,则直角三角形的面积是______。(2)观察图②,其中两个相同的直角三角形边AE、EB在一条直线上,请利用几何图形的之间的面积关系,试说明。(3)如图③所示,折叠长方形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8,BC=10,利用上面的结论求EF的长?21.(8分)如图,已知D为BC的中点,DE⊥AB,DF⊥AC,点E、F为垂足,且BE=CF.求证:△ABC是等腰三角形.22.(10分)如图,是等边三角形,延长到,使,点是边的中点,连接并延长交于.求证:(1);(2).23.(10分)已知,如图,AD∥BC,∠B=70°,∠C=60°,求∠CAE的度数.(写出推理过程)24.(10分)计算(1)(2)(3)解方程组:25.(12分)如图,为等边三角形,延长到,延长到,,连结,,求证:.26.(1)计算:(2)计算:

参考答案一、选择题(每题4分,共48分)1、D【分析】证明△BDH≌△ADC,根据全等三角形的对应边相等即可得出结论.【详解】∵AD⊥BC,∴∠BDH=∠ADC=90°.∵∠ABC=15°,∴∠BAD=∠ABC=15°,∴AD=BD.∵BE⊥AC,∴∠BEC=90°,∴∠CAD+∠C=90°,∠DBH+∠C=90°,∴∠DBH=∠CAD.在△BDH和△ADC中,∵,∴△BDH≌△ADC(ASA),∴AC=BH.∵AC=1,∴BH=1.故选:D.【点睛】本题考查了三角形内角和定理,全等三角形的判定和性质,等腰三角形的判定,解答此题的关键是能求出△BDH≌△ADC,难度适中.2、D【分析】利用直角三角形三条高线相交于直角顶点可对A进行判断;根据等腰三角形三线合一可对B进行判断;根据勾股定理的逆定理可对C进行判断;根据线段垂直平分线定理的逆定理可对D进行判断.【详解】解:A、锐角三角形的三条高线相交于三角形内一点,直角三角形三条高线相交于直角顶点,所以A选项错误;B、等腰三角形的底边上的中线与与底边上的高重合,所以B选项错误;C、因为,所以三边长为,,不为为直角三角形,所以B选项错误;D、到线段两端距离相等的点在这条线段的垂直平分线上,所以D选项正确.故选:D.【点睛】本题考查了命题与定理:要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.3、C【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解.【详解】A.

不符合完全平方公式法分解因式的式子特点,故错误;B.

不符合完全平方公式法分解因式的式子特点,故错误;C.符合完全平方公式法分解因式的式子特点,故正确;D.,不符合完全平方公式法分解因式的式子特点,故错误.故选C.【点睛】本题考查因式分解-运用公式法.4、B【分析】先根据直角三角板的性质求出∠1及∠2的度数,再根据三角形内角与外角的关系即可解答.【详解】解:如图,由题意,可得∠2=45°,∠1+∠2=90°,

∴∠1=90°45°=45°,

∴∠α=∠1+30°=45°+30°=75°.

故答案为:75°.【点睛】本题考查的是三角形内角和定理,三角形外角的性质,掌握三角形的外角等于与它不相邻的两个内角的和是解题的关键.5、C【分析】分为三种情况:①AP=OP,②AP=OA,③OA=OP,分别画出即可.【详解】如图,分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.∴以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.故选C.【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.6、B【分析】由折叠的性质可得AD=BD,由△ABC的周长为38cm,△DBC的周长为25cm,可列出两个等式,可求解.【详解】∵将△ADE沿DE折叠,使点A与点B重合,

∴AD=BD,

∵△ABC的周长为38cm,△DBC的周长为25cm,

∴AB+AC+BC=38cm,BD+CD+BC=AD+CD+BC=AC+BC=25cm,

∴AB=13cm=AC

∴BC=25-13=12cm

故选:B.【点睛】本题考查了翻折变换,熟练运用折叠的性质是本题的关键.7、B【分析】仔细观察图形,结合三角形每条边上的三角形的个数与图形的序列数之间的关系发现图形的变化规律,利用发现的规律求解即可.【详解】观察发现:第一个图形有1+1=2个三角形;第二个图形有2+2=4个三角形;第三个图形有3+22=7个三角形;…第n个图形有n+2n-1个三角形;当n=8时,n+2n-1=8+27=1.故选:B.【点睛】本题考查了规律型:图形的变化类,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.8、A【分析】根据三角形内角和定理得到∠ABC+∠ACB=140°,根据角平分线的性质得到BO平分∠ABC,CO平分∠ACB,根据三角形内角和定理计算即可.【详解】∵∠A=40°,∴∠ABC+∠ACB=180°-40°=140°,∵点O到△ABC三边的距离相等,∴BO平分∠ABC,CO平分∠ACB,∴∠OBC+∠OCB=×(∠ABC+∠ACB)=70°,∴∠BOC=180°-70°=110°,故选:A.【点睛】本题考查的是角平分线的性质,三角形内角和定理,掌握角的平分线上的点到角的两边的距离相等是解题的关键.9、C【解析】根据轴对称图形的性质进行判断.【详解】图A,不是轴对称图形,故排除A;图B,不是轴对称图形,故排除B;图C,是轴对称图形,是正确答案;图D,不是轴对称图形,故排除D;综上,故本题选C.【点睛】如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.10、D【分析】根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.【详解】根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A、,错误;B、,错误;C、,错误;D、,正确;故选D.【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.11、C【解析】∵∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E.∴DE=DC,∴AE=AC=BC,∴BE+DE+BD=BD+DC+BE=BC+BE=AC+BE=AE+BE=AB=6cm.故选C.12、C【解析】根据轴对称图形的概念求解.【详解】第1,2,3个图形为轴对称图形,共3个.故选:C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.二、填空题(每题4分,共24分)13、【分析】先提取公因式3xy,再对余下的多项式利用平方差公式继续分解.【详解】3x3y﹣12xy=3xy(x2﹣4)=3xy(x+2)(x﹣2).故答案为:3xy(x+2)(x﹣2).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14、②.【分析】一般三角形全等的判定方法有SSS,SAS,AAS,ASA,据此可逐个对比求解.【详解】∵已知,且∴若添加①,则可由判定≌;若添加②,则属于边边角的顺序,不能判定≌;若添加③,则属于边角边的顺序,可以判定≌.故答案为②.【点睛】本题考查全等三角形的几种基本判定方法,只要判定方法掌握得牢固,此题不难判断.15、(x﹣y)2(x+y)【分析】根据因式分解可得,,然后根据最简公分母的定义进行分析即可得出答案.【详解】解:把分式与进行通分时,x2﹣y2=(x+y)(x﹣y),故最简公分母为:(x﹣y)2(x+y).故答案为:(x﹣y)2(x+y).【点睛】本题主要考察了最简公分母的定义,解题的关键是对分母进行因式分解.16、1【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【详解】解:∵,,

∴原式,故答案为:1.【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.17、重心【解析】重心:三角形三条中线交于一点,且重心到顶点的距离与重心到对边中点的距离之比为2:1【详解】解:三角形三条中线交于一点,这个点叫做三角形的重心,故答案为:重心.【点睛】本题考查的是三角形重心的概念,掌握即可解题.18、20°.【分析】依据题意,设出顶角度数,根据“特征值”可知底角度数,再由三角形内角和定理即可求得.【详解】如图.∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:4,∵∠A+∠B+∠C=180°,∴∠A+4∠A+4∠A=180°,即9∠A=180°,∴∠A=20°,故答案为:20°.【点睛】本题主要考查了等腰三角形的性质以及三角形内角和定理的知识,灵活运用这部分知识是解决本题的关键.三、解答题(共78分)19、(1)AB的解析式是y=-x+1.点B(3,0).(2)n-1;(3)(3,4)或(5,2)或(3,2).【解析】试题分析:(1)把A的坐标代入直线AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐标;(2)过点A作AM⊥PD,垂足为M,求得AM的长,即可求得△BPD和△PAB的面积,二者的和即可求得;(3)当S△ABP=2时,n-1=2,解得n=2,则∠OBP=45°,然后分A、B、P分别是直角顶点求解.试题解析:(1)∵y=-x+b经过A(0,1),∴b=1,∴直线AB的解析式是y=-x+1.当y=0时,0=-x+1,解得x=3,∴点B(3,0).(2)过点A作AM⊥PD,垂足为M,则有AM=1,∵x=1时,y=-x+1=,P在点D的上方,∴PD=n-,S△APD=PD•AM=×1×(n-)=n-由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,∴S△BPD=PD×2=n-,∴S△PAB=S△APD+S△BPD=n-+n-=n-1;(3)当S△ABP=2时,n-1=2,解得n=2,∴点P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2种情况,如图2∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3种情况,如图3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB和△PEB中,∴△PCB≌△PEB(SAS),∴PC=CB=PE=EB=2,∴C(3,2).∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(3,4)或(5,2)或(3,2).考点:一次函数综合题.20、(1)5、;(2)见解析;(3)5【分析】(1)根据勾股定理和三角形面积公式计算即可;(2)分别用不同的方式表示出梯形的面积,列出等式,根据整式的运算法则计算即可;(3)根据勾股定理计算.【详解】(1)由勾股定理得,;∵∴∵=9∴,解得直角三角形面积=故填:5、;(2)图②的面积又图②的面积∴∴,即;(3)由题意,知AF=AD=10,BC=AD=10,CD=AB=8,在直角△ABF中,,即,∴BF=6又∵BC=10∴CF=BC−BF=10−6=4设EF=x,则DE=x,∴EC=DC−DE=8−x,在直角△ECF中,,即解得x=5,即EF=5.【点睛】本题主要考查的是四边形的综合运用,掌握梯形的面积公式、勾股定理以及翻折的性质是解题的关键.21、见解析.【分析】由于DE⊥AB,DF⊥AC,那么∠DEB=∠DFC=90°,根据D是BC中点可得BD=CD,而BE=CF,根据HL可证Rt△BED≌Rt△CFD,于是∠B=∠C,进而可证△ABC等腰三角形;【详解】解:∵点D是BC边上的中点,

∴BD=CD,

∵DE⊥AB于E,DF⊥AC于F,

∴∠DEB=∠DFC=90°,

在Rt△BED和Rt△CFD中,∴Rt△BED≌Rt△CFD(HL),

∴∠B=∠C,

∴AB=AC,

∴△ABC等腰三角形;【点睛】本题考查了全等三角形的判定和性质、等腰三角形的判定,解题的关键是证明Rt△BED≌Rt△CFD.22、(1)见解析;(2)见解析.【分析】(1)根据等边三角形的性质可知,,从而可得,再利用三角形的内角和可求得,最后根据垂直定义可证得(2)通过添加辅助线构造出,再利用等边三角形的相关性质证得,从而得出,最后根据角所对的直角边等于斜边的一半知,即.【详解】(1)∵为等边三角形∴,,∵是边的中点∴∵∴,∴∵,∴∴∴;(2)连接∵为等边三角形∴,,∵是边的中点∴∵∴∴∵在中,∴,∴,即:【点睛】本题主要考查了等边三角形的性质,含的直角三角形的性质.第一问再利用三角形的内角和、垂直定义等知识点即可得证;第二问解题关键在于辅助线的添加,构造出含的直角三角形,再利用等边三角形的性质以及等要三角形的判定进一步转化得证最后结论.23、130°,见解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论