




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长是,则图中四个小正方形的面积之和是()A. B. C. D.不能确定2.把分解因式得()A. B.C. D.3.若是完全平方式,则的值为()A.3或 B.7或 C.5 D.74.下图中为轴对称图形的是().A. B. C. D.5.如图,△ABC中,AD垂直BC于点D,且AD=BC,BC上方有一动点P满足,则点P到B、C两点距离之和最小时,∠PBC的度数为()A.30° B.45° C.60° D.90°6.某小区开展“节约用水,从我做起”活动,下表是从该小区抽取的10个家庭本月与上月相比节水情况统计表:节水量()0.20.30.40.50.6家庭数(个)12241这10个家庭节水量的平均数和中位数分别是()A.0.42和0.4 B.0.4和0.4 C.0.42和0.45 D.0.4和0.457.若x2﹣kxy+9y2是一个完全平方式,则k的值为()A.3 B.±6 C.6 D.+38.在3.14;;;π;这五个数中,无理数有()A.0个 B.1个 C.2个 D.3个9.如图,直线a,b,c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处 B.两处 C.三处 D.四处10.当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2 D.(a2)3=a511.下列运算不正确的是()A.x2•x3=x5 B.(x2)3=x6 C.x3+x3=2x6 D.(﹣2x)3=﹣8x312.一次跳远比赛中,成绩在4.05米以上的有8人,频率为0.4,则参加比赛的共有()A.40人 B.30人 C.20人 D.10人二、填空题(每题4分,共24分)13.已知直线l1:y=x+6与y轴交于点B,直线l2:y=kx+6与x轴交于点A,且直线l1与直线l2相交所形成的角中,其中一个角的度数是75°,则线段AB的长为______.14.有6个实数:,,,,,,其中所有无理数的和为______.15.若三角形三个内角的度数之比为,最短的边长是,则其最长的边的长是__________.16.若a+b=3,则代数式(-a)÷=_____________.17.依据流程图计算需要经历的路径是(只填写序号),输出的运算结果是.18.=_________三、解答题(共78分)19.(8分)(1)计算:;(2)作图题:(不写作法,但必须保留作图痕迹)如图,点、是内两点,分别在和上找点和,使四边形周长最小.20.(8分)如图,网格中的与为轴对称图形,且顶点都在格点上.(1)利用网格,作出与的对称轴;(2)结合图形,在对称轴上画出一点,使得最小;(3)如果每个小正方形的边长为1,请直接写出的面积.21.(8分)△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1、B1、C1的坐标.(2)将△ABC向右平移6个单位,画出平移后的△A2B2C2;(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.22.(10分)_______.23.(10分)解答下列各题(1)已知:如图1,直线AB、CD被直线AC所截,点E在AC上,且∠A=∠D+∠CED,求证:AB∥CD;(2)如图2,在正方形ABCD中,AB=8,BE=6,DF=1.①试判断△AEF的形状,并说明理由;②求△AEF的面积.24.(10分)如图,是边长为9的等边三角形,是边上一动点,由向运动(与、不重合),是延长线上一动点,与点同时以相同的速度由向延长线方向运动(不与重合),过作于,连接交于(1)若时,求的长(2)当点,运动时,线段与线段是否相等?请说明理由(3)在运动过程中线段的长是否发生变化?如果不变,求出线段的长;如果发生变化,请说明理由25.(12分)在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.过射线AD上一点M作BM的垂线,交直线AC于点N.(1)如图1,点M在AD上,若∠N=15°,BC=2,则线段AM的长为;(2)如图2,点M在AD上,求证:BM=NM;(3)若点M在AD的延长线上,则AB,AM,AN之间有何数量关系?直接写出你的结论,不证明.26.在一次军事演习中,红方侦查员发现蓝方的指挥部P设在S区.到公路a与公路b的距离相等,并且到水井M与小树N的距离也相等,请你帮助侦查员在图上标出蓝方指挥部P的位置.(不写作法,保留作图痕迹)
参考答案一、选择题(每题4分,共48分)1、A【分析】根据正方形的面积公式求出最大的正方形的面积,根据勾股定理计算即可.【详解】∵最大的正方形边长为∴最大的正方形面积为由勾股定理得,四个小正方形的面积之和正方形E、F的面积之和最大的正方形的面积故答案选A.【点睛】本题考查了正方形面积运算和勾股定理,懂得运用勾股定理来表示正方形的面积间的等量关系是解题的关键.2、D【分析】首先利用平方差公式分解因式,进而利用完全平方公式分解因式得出即可.【详解】解:
.
故选:D.【点睛】本题主要考查了公式法因式分解,正确应用乘法公式是解题关键.3、B【分析】根据是一个完全平方式,可得:m-3=±1×4,据此求出m的值是多少即可.【详解】解:∵关于x的二次三项式是一个完全平方式,∴m-3=±1×4∴m=7或.故选:B.【点睛】此题主要考查了完全平方公式的应用,要熟练掌握,解答此题的关键是要明确:(a±b)1=a1±1ab+b1.4、D【分析】根据轴对称图形的定义可得.【详解】根据轴对称图形定义可得ABC选项均不是轴对称图形,D选项为轴对称图形.【点睛】轴对称图形沿对称轴折叠,左右两边能够完全重合.5、B【分析】根据得出点P到BC的距离等于AD的一半,即点P在过AD的中点且平行于BC的直线l上,则此问题转化成在直线l上求作一点P,使得点P到B、C两点距离之和最小,作出点C关于直线l的对称点C’,连接BC’,然后根据条件证明△BCC’是等腰直角三角形即可得出∠PBC的度数.【详解】解:∵,∴点P到BC的距离=AD,∴点P在过AD的中点E且平行于BC的直线l上,作C点关于直线l的对称点C’,连接BC’,交直线l于点P,则点P即为到B、C两点距离之和最小的点,∵AD⊥BC,E为AD的中点,l∥BC,点C和点C’关于直线l对称,∴CC’=AD=BC,CC’⊥BC,∴三角形BCC’是等腰直角三角形,∴∠PBC=45°.故选B.【点睛】本题主要考查了轴对称变换—最短距离问题,根据三角形的面积关系得出点P在过AD的中点E且平行于BC的直线l上是解决此题的关键.6、C【分析】根据加权平均数的计算公式与中位数的定义即可求解.【详解】10个家庭节水量的平均数为=0.42;第5,6个家庭的节水量为0.4,0.5,∴中位数为0.45,故选C.【点睛】此题考查了加权平均数与中位数,掌握加权平均数的计算公式是解题的关键,是一道基础题.7、B【解析】∵x2−kxy+9y2是完全平方式,∴−kxy=±2×3y⋅x,解得k=±6.故选B.8、D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:3.14是有限小数,属于有理数;是分数,属于有理数.无理数有;π;共3个.故选:D.【点睛】本题考查实数的分类,掌握有理数及无理数的概念是本题的解题关键.9、D【分析】根据角平分线上的点到角两边的距离相等作图即可得到结果.【详解】解:如图所示,可供选择的地址有4个,故选:D【点睛】本题主要考查的是角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.10、A【分析】直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案.【详解】A选项:a0=1,正确;B选项:a﹣1=,故此选项错误;C选项:(﹣a)2=a2,故此选项错误;D选项:(a2)3=a6,故此选项错误;故选A.【点睛】考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算,正确掌握相关运算法则是解题关键.11、C【解析】A.∵x2•x3=x5,故正确;B.∵(x2)3=x6,故正确;C.∵x3+x3=2x3,故不正确;D.∵(﹣2x)3=﹣8x3,故正确;故选C.12、C【分析】根据频率、频数的关系:频率=频数÷数据总和,可得数据总和=频数÷频率.【详解】∵成绩在4.05米以上的频数是8,频率是0.4,∴参加比赛的运动员=8÷0.4=20.故选C.【点睛】考查频数与频率,掌握数据总和=频数÷频率是解题的关键.二、填空题(每题4分,共24分)13、12或4【分析】令直线y=x+6与x轴交于点C,令y=x+6中x=0,则y=6,得到B(0,6);令y=kx+6中y=0,则x=-6,求得C(-6,0),求得∠BCO=45°,如图1所示,当α=∠BCO+∠BAO=75°,如图2所示,当α=∠CBO+∠ABO=75°,解直角三角形即可得到结论.【详解】令直线y=x+6与x轴交于点C,令y=x+6中x=0,则y=6,∴B(0,6);令y=kx+6中y=0,则x=-6,∴C(-6,0),∴∠BCO=45°,如图1所示,∵α=∠BCO+∠BAO=75°,∴∠BAO=30°,∴AB=2OB=12,如图2所示,∵α=∠CBO+∠ABO=75°,∴∠ABO=30°,∴AB=OB=4,故答案为:12或4.【点睛】本题考查了两直线相交或平行的问题,一次函数图象上点的坐标特征以及特殊角的三角函数值,解题的关键是求出∠BAO=30°或∠ABO=30°.14、【分析】先根据无理数的定义,找出这些数中的无理数,再计算所有无理数的和.【详解】无理数有:,,,∴==故答案为:.【点睛】本题是对无理数知识的考查,熟练掌握无理数的知识和实数计算是解决本题的关键.15、10cm【分析】根据三角形内角和定理可求得三个角的度数分别为30°,60°,90°,再根据30°角所对的直角边是斜边的一半即可求解.【详解】∵三角形三个内角的度数之比为,∴三个角的度数分别为60°,30°,90°,∵最短的边长是5cm,∴最长的边的长为10cm.故答案为:10cm.【点睛】此题主要考查含30度角的直角三角形的性质及三角形内角和定理的综合运用.16、-3【分析】按照分式的运算法则进行运算化简,然后再把a+b=3代入即可求值.【详解】解:原式,又,∴原式=,故答案为.【点睛】本题考查了分式的加减乘除运算法则及化简求值,熟练掌握分式的运算法则是解决本题的关键.17、②③,.【分析】根据化简分式的步骤:先把分式化成同分母分式,再把分母相减,分子不变,即可得出答案.【详解】解:∵==,∴依据流程图计算需要经历的路径是②③;输出的运算结果是;故答案为:②③;.【点睛】本题考查化简分式,利用到平方差公式,解题的关键是掌握化简分式的步骤.18、【解析】首先把化(1.5)2019为×()2018,再利用积的乘方计算()2018×()2018,进而可得答案.【详解】原式=()2018×()2018()2018.故答案为.【点睛】本题考查了积的乘方,关键是掌握(ab)n=anbn(n是正整数).三、解答题(共78分)19、(1);(2)答案见解析.【分析】(1)首先将小括号里的式子首先将原式的被除数去括号合并后,利用多项式除以单项式法则计算,即可得到结论;(2)根据题意和两点之间线段最短,首先画出点P关于OM的对称点P₁,再画出点Q关于直线ON的对称点Q₁,连接P₁Q₁于OM,ON交于点A,B,,四边形PABQ周长最小.【详解】(1)原式(2)作法:首先画出点P关于OM的对称点P₁,再画出点Q关于直线ON的对称点Q₁,连接P₁Q₁于OM,ON交于点A,B,,四边形PABQ周长最小..【点睛】(1)本题考查了多项式混合运算,做这类题一定要细心;(2)考查的是四边形的周长最短,把它转化成线段最短问题.20、(1)见解析;(2)见解析;(1)1【分析】(1)对称轴应为两个三角形对应点连线的中线,故连接CF、DE,找到线段CF、DE的中点,再连接起来,即为所求直线;(2)连接CD与的交点即为点P的位置,因为点A与点D关于对称,根据两点之间,线段最短可得:,即P点即为所求;(1)ABC的面积可由一个矩形,减去三个直角三角形的面积所得.【详解】解:(1)对称轴应为两个三角形对应点连线的中线,故连接CF、DE,找到线段CF、DE的中点,再连接起来,即为所求直线.(2)如图所示,点P即为所求;连接CD与的交点即为点P的位置,因为点A与点D关于对称,根据两点之间,线段最短可得:,即P点即为所求;(1)ABC的面积可由一个矩形,减去三个直角三角形的面积所得,,故ABC的面积为1.【点睛】本题主要考察了对称轴的画法、求两点到第三点距离之和最短的情况、用割补法求三角形面积,解题的关键在于结合图形中对应点找出对称轴,并以此对称轴求得距离最短的情况.21、(1)图详见解析,A1、B1、C1的坐标分别为(0,4)、(2,2),(1,1);(2)详见解析;(3)△A1B1C1和△A2B2C2关于直线x=3对称.【分析】(1)利用关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用点利用的坐标规律写出A2、B2、C2的坐标,然后描点即可得到△A2B2C2;(3)利用对称轴的对应可判断△A1B1C1和△A2B2C2关于直线x=3对称.【详解】解:(1)如图,△A1B1C1为所作,A1、B1、C1的坐标分别为(0,4)、(2,2),(1,1);(2)如图,△A2B2C2为所作;(3)△A1B1C1和△A2B2C2关于直线x=3对称,如图.【点睛】本题考查轴画轴对称图形,关键在于熟记轴对称的基础知识,理解题意.22、【分析】根据二次根式的混合运算顺序和运算法则进行计算即可解答.【详解】原式===,故答案为:.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算法则是解答的关键,但需要注意最后结果必须为最简二次根式的形式.23、(1)详见解析;(2)①△AEF是直角三角形,理由详见解析;②2.【分析】(1)延长AC至F,证明∠FCD=∠A,则结论得证;(2)①延长AF交BC的延长线于点G,证明△ADF≌△GCF,可得AF=FG,然后求出AE=EG,由等腰三角形的性质可得△AEF是直角三角形;②根据S△AEF=S正方形ABCD﹣S△ABE﹣S△ADF﹣S△CEF进行计算即可.【详解】解:(1)延长AC至F,如图1,∵∠FCD=∠CED+∠D,∠A=∠D+∠CED,∴∠FCD=∠A,∴AB∥CD;(2)①如图2,延长AF交BC的延长线于点G,∵正方形ABCD中,AB=8,DF=1,∴DF=CF=1,∵∠D=∠FCG=90°,∠AFD=∠CFG,∴△ADF≌△GCF(ASA),∴AF=FG,AD=GC=8,∵AB=8,BE=6,∴AE===10,CE=2,∵EG=CE+CG=2+8=10,∴AE=EG,∴EF⊥AG,∴△AEF是直角三角形;②∵AB=AD=8,DF=CF=1,BE=6,CE=2,S△AEF=S正方形ABCD﹣S△ABE﹣S△ADF﹣S△CEF,=,=61-21-16-1,=2.【点睛】本题是四边形综合题,考查了平行线的判定,正方形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的性质及三角形的面积计算等知识,熟练掌握全等三角形的判定与性质是解题的关键.24、(1)当∠BQD=30°时,AP=3;(2)相等,见解析;(3)DE的长不变,【分析】(1)先判断出∠QPC是直角,再利用含30°的直角三角形的性质得出QC=2PC,建立方程求解决即可;(2)先作出PF∥BC得出∠PFA=∠FPA=∠A=60°,进而判断出△DBQ≌△DFP得出DQ=DP即可得出结论;(3)利用等边三角形的性质得出EF=AF,借助DF=DB,即可得出DF=BF,最后用等量代换即可.【详解】(1)解:∵△ABC是边长为9的等边三角形∴∠ACB=60°,且∠BQD=30°∴∠QPC=90°设AP=,则PC=,QB=∴QC=∵在Rt△QCP中,∠BQD=30°∴PC=QC即解得∴当∠BQD=30°时,AP=3(2)相等,证明:过P作PF∥QC,则△AFP是等边三角形∴AP=PF,∠DQB=∠DPF∵P、Q同时出发,速度相同,即BQ=AP,∴BQ=PF,在△DBQ和△DFP中,∴△DBQ≌△DFP(AAS)∴QD=PD(3)解:不变,由(2)知△DBQ≌△DFP∴BD=DF∵△AFP是等边三角形,PE⊥AB,∴AE=EF,∴DE=DF+EF=BF+FA=AB=为定值,即DE的长不变.【点睛】此题是三角形综合题,主要考查了含30°的直角三角形的性质,等边三角形的性质,全等三角形的判定和性质,判断出△DQB≌△DPF是解本题的关键,作出辅助线是解本题的难点,是一道比较简单的中考常考题.25、(1)﹣1;(2)见解析;(3)AM.【分析】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/LTXH 002-2023“天赋河套”区域公用品牌黄柿子汁
- T/TMAC 094-2024公路工程玄武岩纤维复合筋设计与施工规范
- 江苏省蔬菜买卖合同4篇
- 上海二建试题及答案
- 2025年舞蹈教练聘用合同2篇
- 个体经营短期借款协议书8篇
- 晚会演出合同协议书范本3篇
- 文娱与体育课件
- 2025辽宁师范大学辅导员考试试题及答案
- 2025益阳教育学院辅导员考试试题及答案
- 人保农险理赔试题
- Machine-Cmk-设备能力指数Cmk分析表
- 心理健康教育特色学校建设路径
- 2025年全国保密教育线上培训考试试题库【完整版】附带答案详解
- (二模)2025年5月济南市高三高考针对性训练英语试卷(含答案解析)
- 修脚师劳动合同(新标准版)6篇
- TCHSA-012-2023-儿童口腔疾病治疗中静脉镇静技术规范
- ISO27001:2022信息安全管理体系全套文件+表单
- 大学体育与体质健康(山东联盟)智慧树知到期末考试答案章节答案2024年中国石油大学(华东)
- 网络食品交易第三方平台备案表
- Dell 2950 SAS5RAID完全配置手册
评论
0/150
提交评论