版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章图形的相似第31课时相似三角形判定定理的证明·上册·目录01温故知新02知识重点03对点范例04课本母题05母题变式06创新设计1.
如图S4-31-1,D是△ABC的边AB上的一点,那么下列四个条件不能单独判定△ABC∽△ACD的是(
C
)图S4-31-1C
(限时3分钟)温故知新A.
∠B=∠ACDB.
∠ADC=∠ACBD.
AC2=AD·AB2.
如图S4-31-2,网格中相似的两个三角形是(
D
)图S4-31-2DA.
①与④B.
②与③C.
①与⑤D.
②与⑤
(1)两角分别
相等
的两个三角形相似;
(2)两边
成比例且夹角
相等的两个三角形相似;
(3)三边
成比例
的两个三角形相似.相等
成比例且夹角
成比例
知识重点3.
如图S4-31-3,已知在△ABC与△ADE中,∠C=∠AED=90°,点E在AB上,则添加下列一个条件后,仍然不能判定△ABC与△DAE相似的是(
D
)图S4-31-3DA.
∠CAB=∠DC.
AD∥BC对点范例知识点1两角对应相等判定三角形相似【例1】(课本P102习题)已知:如图S4-31-4,在△ABC中,D是边AC上的一点,∠CBD的平分线交AC于点E,且AE=AB.求证:AE2=AD·AC.
课本母题图S4-31-4思路点拨:根据角平分线的性质和外角等于不相邻两内角和即可求得∠ABD=∠C,可证明△ABD∽△ACB,即可解题.证明:∵BE平分∠CBD,∴∠DBE=∠CBE.∵AE=AB,∴∠ABE=∠AEB.∵∠ABE=∠ABD+∠DBE,∠AEB=∠C+∠CBE,∴∠ABD=∠C.又∵∠A=∠A,∴△ABD∽△ACB.∴AB∶AD=AC∶AB,即AB2=AD·AC.∵AE=AB,∴AE2=AD·AC.图S4-31-44.
如图S4-31-5,Rt△ABC中,∠ACB=90°,D是BC的中点,CE⊥AD,垂足为E.图S4-31-5母题变式(1)求证:CD2=DE·AD;证明:(1)∵CE⊥AD,∴∠CED=∠ACB=90°.∵∠CDE=∠ADC,∴△CDE∽△ADC.∴CD∶AD=DE∶CD.∴CD2=DE·AD.
图S4-31-5(2)求证:∠BED=∠ABC.
证明:(2)∵D是BC的中点,∴BD=CD.∵CD2=DE·AD,∴BD2=DE·AD.∴BD∶AD=DE∶BD.又∵∠BDE=∠ADB,∴△BDE∽△ADB.∴∠BED=∠ABC.
图S4-31-5知识点2三边对应成比例判定三角形相似
课本母题图S4-31-6思路点拨:根据三组对应边的比相等的两三角形相似可判断△ADE∽△CAB,从而∠AED=∠B,再根据等腰三角形的判定定理即可得到结论.
图S4-31-6
图S4-31-7(1)∠DAB=∠EAC;
母题变式(2)DB·AC=AB·EC.
图S4-31-76.
(课本P102习题-创新题)如图S4-31-8,在△ABC中,AB=8cm,BC=16cm,动点P从点A开始沿AB边运动,速度为2cm/s;动点Q从点B开始沿BC边运动,速度为4cm/s.如果P,Q两动点同时运动,那么何时△QBP与△ABC相似?创新设计图S4-31-8解:设经过ts时,△QBP与△ABC相似,则AP=2tcm,BP=(8-2t)cm,BQ=4tcm.∵∠PBQ=∠ABC,
图S4-31-8
图S4-31-87.
(创新变式)如图S4-31-9,在Rt△ABC中,∠A=90°,AC=16cm,AB=8cm,动点D从点B出发,沿BA方向运动;同时动点E从点A出发,沿AC方向运动.如果点E的运动速度为4cm/s,点D的运动速度为2cm/s,那么运动几秒时,△ABC和△ADE相似?图S4-31-9解:设同时运动ts时两个三角形相似.根据题意可知,AC=16,AB=8,AD=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏省人民医院心血管内科科研助理招聘1人备考笔试题库及答案解析
- 深度解析(2026)GBT 26711-2024深度解析(2026)《微孔笔头墨水笔》
- 2025湖南怀化市教育局直属学校招聘教职工65人备考考试试题及答案解析
- 深度解析(2026)《GBT 25893.1-2010信息技术 通 用多八位编码字符集 蒙古文名义字符与变形显现字符 16点阵字型 第1部分:白体》
- 2025广东江门公共资源交易控股集团有限公司人力资源总监招聘1人备考考试试题及答案解析
- 2026云南昆明市官渡区矣六街道办事处招聘7人考试备考题库及答案解析
- 2026甘肃甘南州夏河县兵役登记暨征兵模拟笔试试题及答案解析
- 2025浙江宁波海发渔业科技有限公司招聘1人备考考试试题及答案解析
- 2025重庆高新区西永街道招聘公益性岗位8人参考考试试题及答案解析
- 2026四川广元市昭化区招聘城镇公益性岗位4人备考笔试试题及答案解析
- 中国普通食物营养成分表(修正版)
- 20道长鑫存储设备工程师岗位常见面试问题含HR常问问题考察点及参考回答
- 抖音ip孵化合同范本
- 小升初语文总复习《文章主要内容概括》专项练习题(附答案)
- DL-T606.5-2009火力发电厂能量平衡导则第5部分-水平衡试验
- python程序设计-说课
- 国家电网智能化规划总报告
- 遥远的向日葵地
- 箱涵施工组织设计样本
- 质量意识培养
- 2000人学校食堂人员配置标准
评论
0/150
提交评论