安徽省宿州砀山县联考2025届九年级数学第一学期期末达标检测模拟试题含解析_第1页
安徽省宿州砀山县联考2025届九年级数学第一学期期末达标检测模拟试题含解析_第2页
安徽省宿州砀山县联考2025届九年级数学第一学期期末达标检测模拟试题含解析_第3页
安徽省宿州砀山县联考2025届九年级数学第一学期期末达标检测模拟试题含解析_第4页
安徽省宿州砀山县联考2025届九年级数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省宿州砀山县联考2025届九年级数学第一学期期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图平行四边变形ABCD中,E是BC上一点,BE∶EC=2∶3,AE交BD于F,则S△BFE∶S△FDA等于()A.2∶5 B.4∶9 C.4∶25 D.2∶32.如图,已知DE∥BC,CD和BE相交于点O,S△DOE:S△COB=4:9,则AE:EC为()A.2:1 B.2:3 C.4:9 D.5:43.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手

平均数(环)

9.2

9.2

9.2

9.2

方差(环2)

0.035

0.015

0.025

0.027

则这四人中成绩发挥最稳定的是()A.甲 B.乙 C.丙 D.丁4.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是()A.30° B.40° C.50° D.60°5.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果,那么的值是()A. B. C. D.6.随着国民经济快速发展,我国涌现出一批规模大、效益高的企业,如大疆、国家核电、华为、凤凰光学等,以上四个企业的标志是中心对称图形的是()A. B. C. D.7.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是A. B.C. D.8.如图是一个半径为5cm的圆柱形输油管的横截面,若油面宽AB=8cm,则油面的深度为()A.1cm B.1.5cm C.2cm D.2.5cm9.三角形在正方形网格纸中的位置如图所示,则的值是()A. B. C. D.10.如图,在Rt△ABC中,∠ACB=90°,如果AC=3,AB=5,那么sinB等于()A. B. C. D.11.下列图形中,是中心对称图形的是()A. B. C. D.12.某楼盘2016年房价为每平方米11000元,经过两年连续降价后,2018年房价为9800元.设该楼盘这两年房价平均降低率为x,根据题意可列方程为()A.9800(1-x)2+9800(1-x)+9800=11000 B.9800(1+x)2+9800(1+x)+9800=11000C.11000(1+x)2=9800 D.11000(1-x)2=9800二、填空题(每题4分,共24分)13.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.己知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为__________.14.如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO、BD,则∠OBD的度数是_____.15.已知△ABC的内角满足=__________度.16.要使式子在实数范围内有意义,则实数x的取值范围是________.17.如图,在平面直角坐标系中,抛物线与轴交于、两点,与轴交于点,点是对称轴右侧抛物线上一点,且,则点的坐标为___________.18.如果一元二次方程有两个相等的实数根,那么是实数的取值为________.三、解答题(共78分)19.(8分)如图,已知抛物线y=﹣x2+bx+3的对称轴为直线x=﹣1,分别与x轴交于点A,B(A在B的左侧),与y轴交于点C.(1)求b的值;(2)若将线段BC绕点C顺时针旋转90°得到线段CD,问:点D在该抛物线上吗?请说明理由.20.(8分)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1,﹣3,﹣5,7,这些卡片除数字外都相同,小芳从口袋中随机抽取一张卡片,小明再从剩余的三张卡片中随机抽取一张,请你用画树状图或列表的方法,求两人抽到的数字符号相同的概率.21.(8分)在平面直角坐标系中,存在抛物线以及两点和.(1)求该抛物线的顶点坐标;(2)若该抛物线经过点,求此抛物线的表达式;(3)若该抛物线与线段只有一个公共点,结合图象,求的取值范围.22.(10分)如图,Rt△ABC中,∠ACB=90°,AC=BC,D是线段AB上一点(0<AD<AB).过点B作BE⊥CD,垂足为E.将线段CE绕点C逆时针旋转90°,得到线段CF,连接AF,EF.设∠BCE的度数为α.(1)①依题意补全图形.②若α=60°,则∠CAF=_____°;=_____;(2)用含α的式子表示EF与AB之间的数量关系,并证明.23.(10分)在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交AB(或AB的延长线)于点N,连接CN.感知:如图①,当M为BD的中点时,易证CM=MN.(不用证明)探究:如图②,点M为对角线BD上任一点(不与B、D重合).请探究MN与CM的数量关系,并证明你的结论.应用:(1)直接写出△MNC的面积S的取值范围;(2)若DM:DB=3:5,则AN与BN的数量关系是.24.(10分)已知方程是关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程的两个根之和等于两根之积,求的值.25.(12分)如图,直线AC与⊙O相切于点A,点B为⊙O上一点,且OC⊥OB于点O,连接AB交OC于点D.(1)求证:AC=CD;(2)若AC=3,OB=4,求OD的长度.26.如图,在平面直角坐标系中,抛物线(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】由四边形ABCD是平行四边形,可得AD∥BE,由平行得相似,即△BEF∽△DAF,再利用相似比解答本题.【详解】∵,

∴,∵四边形是平行四边形,

∴,∥,

∴,,

∴,,故选:C.【点睛】本题考查了相似三角形的判定与性质.正确运用相似三角形的相似比是解题的关键.2、A【解析】试题解析:∵ED∥BC,故选A.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.3、B【解析】在平均数相同时方差越小则数据波动越小说明数据越稳定,4、C【解析】由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.【详解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵将△ABC绕点C顺时针旋转得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故选C.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.5、D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵∴∴∵AF∥BC,∴△EAF∽△EBC,∴故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.6、B【分析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,据此依次判断即可.【详解】∵在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,∴A、C、D不符合,不是中心对称图形,B选项为中心对称图形.故选:B.【点睛】本题主要考查了中心对称图形的定义,熟练掌握相关概念是解题关键.7、C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.8、A【分析】过点O作OD⊥AB于点D,根据垂径定理可求出AD的长,再在Rt△AOD中,利用勾股定理求出OD的长即可得到答案.【详解】解:过点O作OD⊥AB于点D,∵AB=8cm,∴AD=AB=4cm,在Rt△AOD中,OD===2(cm),∴油面深度为:5-2=1(cm)故选:A.【点睛】本题考查了垂径定理和勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9、A【分析】根据图形找到对边和斜边即可解题.【详解】解:由网格纸可知,故选A.【点睛】本题考查了三角函数的实际应用,属于简单题,熟悉三角函数的概念是解题关键.10、A【解析】直接利用锐角三角函数关系得出sinB的值.【详解】∵在Rt△ABC中,∠ACB=90°,AC=3,AB=5,∴sinB=故选A.【点睛】此题主要考查了锐角三角函数关系,正确把握定义是解题关键.11、D【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点睛】本题考查的知识点是中心对称图形,掌握中心对称图形的定义是解此题的关键.12、D【分析】设该楼盘这两年房价每年平均降低率为x,则第一次降价后房价为每平方米11000(1-x)元,第二次降价后房价为每平方米11000(1-x)2元,然后找等量关系列方程即可.【详解】解:设该楼盘这两年房价每年平均降低率为x,则由题意得:11000(1-x)2=9800故答案为D.【点睛】本题考查了一元二次方程的应用,审清题意、找到等量关系是解决问题的关键.二、填空题(每题4分,共24分)13、1【分析】袋中黑球的个数为,利用概率公式得到,然后利用比例性质求出即可.【详解】解:设袋中黑球的个数为,根据题意得,解得,即袋中黑球的个数为个.故答案为:1.【点睛】本题主要考查概率的计算问题,关键在于根据题意对概率公式的应用.14、30°【解析】根据点的坐标得到OD,OC的长度,利用勾股定理求出CD的长度,由此求出∠OCD的度数;由于∠OBD和∠OCD是弧OD所对的圆周角,根据“同弧所对的圆周角相等”求出∠OBD的度数.【详解】连接CD.由题意得∠COD=90°,∴CD是⊙A的直径.∵D(0,1),C(,0),∴OD=1,OC=,∴CD==2,∴∠OCD=30°,∴∠OBD=∠OCD=30°.(同弧或等弧所对的圆周角相等)

故答案为30°.【点睛】本题考查圆周角定理以及推论,可以结合圆周角进行解答.15、75【解析】由题意得:,,∴tanA=,cosB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案为75.16、.【分析】根据二次根式被开方数大于等于0,对于分式,分母不能为0,列式计算即可得解.【详解】既是二次根式,又是分式的分母,∴解得:∴实数的取值范围是:故答案为:【点睛】本题主要考查了二次根式及分式有意义的条件,正确把握相关定义是解题关键.17、【分析】根据已知条件,需要构造直角三角形,过D做DH⊥CR于点H,用含字母的代数式表示出PH、RH,即可求解.【详解】解:过点D作DQ⊥x轴于Q,交CB延长线于R,作DH⊥CR于H,过R做RF⊥y轴于F,∵抛物线与轴交于、两点,与轴交于点,∴A(1,0),B(2,0)C(0,2)∴直线BC的解析式为y=-x+2设点D坐标为(m,m²-3m+2),R(m,-m+2),∴DR=m²-3m+2-(-m+2)=m²-2m∵OA=OB=2∴∠CAO=ACO=45°=∠QBR=∠RDH,∴CR=,∵经检验是方程的解.故答案为:【点睛】本题考查了函数性质和勾股定理逆定理的应用还有锐角三角函数值的应用,本题比较复杂,先根据题意构造直角三角形.18、【分析】根据一元二次方程有两个相等的实数根,得知其判别式的值为0,即=32-4×2×m=0,解得m即可.【详解】解:根据题意得,=32-4×2×m=0,

解得m=.故答案为:.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与=b2-4ac有如下关系:当>0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当<0时,方程无实数根.三、解答题(共78分)19、(1)b=﹣2;(2)点D不在该抛物线上,见解析【分析】(1)根据抛物线的对称轴公式,可求出b的值,(2)确定函数关系式,进而求出与x轴、y轴的交点坐标,由旋转可得全等三角形,进而求出点D的坐标,代入关系式验证即可.【详解】解:(1)∵抛物线y=﹣x2+bx+3的对称轴为直线x=﹣1,∴=﹣1,∴b=﹣2;(2)当x=0时,y=3,因此点C(0,3),即OC=3,当y=0时,即﹣x2+bx+3=0,解得x1=﹣3,x2=1,因此OB=1,OA=3,如图,过点D作DE⊥y轴,垂足为E,由旋转得,CB=CD,∠BCD=90°,∵∠OBC+∠BCO=90°=∠BCO+∠ECD,∴∠OBC=∠ECD,∴△BOC≌△CDE(AAS),∴OB=CE=1,OC=DE=3,∴D(﹣3,2)当x=﹣3时,y=﹣9+6+3=0≠2,∴点D不在该抛物线上.【点睛】本题主要考查的是二次函数的综合应用,掌握对称轴的求解公式以及看一个点是否在二次函数上,只需要把点代入二次函数解析式看等式是否成立即可.20、.【分析】画树状图展示所有12种等可能的结果数,再找出两人抽到的数字符号相同的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有12种等可能的结果数,其中两人抽到的数字符号相同的结果数为4,所以两人抽到的数字符号相同的概率=.考点:列表法与树状图法.21、(1)(0,2);(2);(3)m=2或.【分析】(1)是顶点式,可得到结论;

(2)把A点坐标代入得方程,于是得到结论;

(3)分两种情况:当抛物线开口向上或向下时,分别画出图形,找到临界位置关系,求出m的值,再进行分析变化趋势可得到结论.【详解】(1)是顶点式,顶点坐标为;(2)∵抛物线经过点,

∴m=9m+2,

解得:,∴(3)如图1,当抛物线开口向上时,抛物线顶点在线段上时,;当m>2时,直线x=1交抛物线于点(1,m+2),交点位于点B上方,所以此时线段与抛物线一定有两个交点,不符合题意;如图2,当抛物线开口向下时,抛物线顶过点时,;直线x=-3交抛物线于点(-3,9m+2),当时,9m+2<m,交点位于点A下方,直线x=1交抛物线于点(1,m+2),交点位于点B上方,所以此时线段与抛物线一定有且只有一个交点,符合题意;综上所述,当或时,抛物线与线段只有一个公共点.【点睛】本题考查了抛物线的性质,直线与抛物线的位置关系,考虑特殊情况是关键,考查了数形结合的数学思想.22、(1)①补图见解析;②30,;(2)EF=ABcosα;证明见解析.【分析】(1)①利用旋转直接画出图形,②先求出∠CBE=30°,再判断出△ACF≌△BCE,得出∠CAF=30°,再利用等腰直角三角形的性质计算即可得出结论;(2)先判断出△ACF≌△BCE,得出∠CAF=α,再同(1)②的方法即可得出结论.【详解】(1)①将线段CE绕点C逆时针旋转90°,得到线段CF,连接AF,EF,如图1;②∵BE⊥CD,∠CEB=90°,∵α=60°,∴∠CBE=30°,在Rt△ABC中,AC=BC,∴AC=AB,∵∠FCA=90°﹣∠ACE,∠ECB=90°﹣∠ACE,∴∠FCA=∠ECB=α.在△ACF和△BCE中,AC=BC,∠FCA=∠ECB,FC=EC,∴△ACF≌△BCE(SAS),∴∠AFC=∠BEC=90°,∠CAF=∠CBE=30°,∴CF=AC,由旋转知,CF=CE,∠ECF=90°,∴EF=CF=AC=×AB=AB,∴=,故答案为30,;(2)EF=ABcosα.证明:∵∠FCA=90°﹣∠ACE,∠ECB=90°﹣∠ACE,∴∠FCA=∠ECB=α.同(1)②的方法知,△ACF≌△BCE,∴∠AFC=∠BEC=90°,∴在Rt△AFC中,cos∠FCA=.∵∠ACB=90°,AC=BC,∴∠CAB=∠CBA=45°.∵∠ECF=90°,CE=CF,∴∠CFE=∠CEF=45°.在△FCE和△ACB中,∠FCE=∠ACB=90°,∠CFE=∠CAB=45°,∴△FCE∽△ACB,∴=cos∠FCA=cosα,即EF=ABcosα.【点睛】此题是相似形综合题,主要考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,判断出△ACF≌△BCE是解本题的关键.23、探究:见解析;应用:(1)9≤S<1;(2)AN=6BN.【分析】探究:如图①中,过M分别作ME∥AB交BC于E,MF∥BC交AB于F,证明△MFN≌△MEC(ASA)即可解决问题.

应用:(1)求出△MNC面积的最大值以及最小值即可解决问题.

(2)利用平行线分线段成比例定理求出AN,BN即可解决问题.【详解】解:探究:如图①中,过M分别作ME∥AB交BC于E,MF∥BC交AB于F,则四边形BEMF是平行四边形,∵四边形ABCD是正方形,∴∠ABC=90°,∠ABD=∠CBD=∠BME=45°,∴ME=BE,∴平行四边形BEMF是正方形,∴ME=MF,∵CM⊥MN,∴∠CMN=90°,∵∠FME=90°,∴∠CME=∠FMN,∴△MFN≌△MEC(ASA),∴MN=MC;应用:(1)当点M与D重合时,△CNM的面积最大,最大值为1,当DM=BM时,△CNM的面积最小,最小值为9,综上所述,9≤S<1.(2)如图②中,由(1)得FM∥AD,EM∥CD,∴===,∵AN=BC=6,∴AF=3.6,CE=3.6,∵△MFN≌△MEC,∴FN=EC=3.6,∴AN=7.2,BN=7.2﹣6=1.2,∴AN=6BN,故答案为AN=6BN.【点睛】本题是四边形的综合问题,考查了正方形的判定与性质、等腰直角三角形的判定与性质及全等三角形的判定与性质等知识点,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.24、(1)详见解析;(2)1.【分析】(1)根据一元二次方程根的判别式,即可得到结论;(2)由一元二次方程根与系数的关系,得,,进而得到关于m的方程,即可求解.【详解】(1)∵方程是关于的一元二次方程,∴,∵,∴方程总有两个实根;(2)设方程的两根为,,则,根据题意得:,解得:,(舍去),∴的值为1.【点睛】本题主要考查一元二次方程根的判别式以及根与系数的关系,掌握一元二次方程根的判别式以及根与系数的关系是解题的关键.25、(1)见解析;(1)1【分析】(1)由AC是⊙O的切线,得OA⊥AC,结合OD⊥OB,OA=OB,得∠CDA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论