山东省青岛市青岛大附属中学2025届九年级数学第一学期期末综合测试模拟试题含解析_第1页
山东省青岛市青岛大附属中学2025届九年级数学第一学期期末综合测试模拟试题含解析_第2页
山东省青岛市青岛大附属中学2025届九年级数学第一学期期末综合测试模拟试题含解析_第3页
山东省青岛市青岛大附属中学2025届九年级数学第一学期期末综合测试模拟试题含解析_第4页
山东省青岛市青岛大附属中学2025届九年级数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省青岛市青岛大附属中学2025届九年级数学第一学期期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.对于二次函数y=-x2+2x-3,下列说法正确的是()A.当x>0,y随x的增大而减少 B.当x=2时,y有最大值-1C.图像的顶点坐标为(2,-5) D.图像与x轴有两个交点2.如图,在菱形ABCD中,于E,,,则菱形ABCD的周长是A.5 B.10 C.8 D.123.已知反比例函数y=的图象上有A(x1,y1)、B(x2,y2)两点,当x1<x2<0时,y1<y2,则m的取值范围是()A.m<0 B.m>0 C.m< D.m>4.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为()A. B. C. D.65.已知二次函数的图象如图所示,则下列结论:①;②;③当时,:④方程有两个大于-1的实数根.其中正确的是()A.①②③ B.①②④ C.②③④ D.①③④6.如图,某中学计划靠墙围建一个面积为的矩形花圃(墙长为),围栏总长度为,则与墙垂直的边为()A.或 B. C. D.7.随机抛掷一枚质地均匀的骰子一次,下列事件中,概率最大的是()A.朝上一面的数字恰好是6 B.朝上一面的数字是2的整数倍C.朝上一面的数字是3的整数倍 D.朝上一面的数字不小于28.在平面直角坐标系中,将横纵坐标之积为1的点称为“好点”,则函数的图象上的“好点”共有()A.1个 B.2个 C.3个 D.4个9.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A. B. C. D.10.下列成语所描述的事件是必然发生的是()A.水中捞月 B.拔苗助长 C.守株待兔 D.瓮中捉鳖二、填空题(每小题3分,共24分)11.足球从地面踢出后,在空中飞行时离地面的高度与运动时间的关系可近似地表示为,则该足球在空中飞行的时间为__________.12.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是_______________.13.若为一元二次方程的一个根,则__________.14.如图,中,,且,,则___________15.小明向如图所示的区域内投掷飞镖,阴影部分时的内切圆,已知,,,如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为____________.16.如图所示,等边△ABC中D点为AB边上一动点,E为直线AC上一点,将△ADE沿着DE折叠,点A落在直线BC上,对应点为F,若AB=4,BF:FC=1:3,则线段AE的长度为_____.17.计算__________.18.布袋中装有3个红球和4个白球,它们除颜色外其余都相同,如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是_______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,抛物线行经过点和点,交轴正半轴于点,连接,点是线段上动点(不与点重合),以为边在轴上方作正方形,接,将线段绕点逆时针旋转90°,得到线段,过点作轴,交抛物线于点,设点.(1)求抛物线的解析式;(2)若与相似求的值;(3)当时,求点的坐标.20.(6分)已知反比例函数的图象经过点(2,﹣2).(I)求此反比例函数的解析式;(II)当y≥2时,求x的取值范围.21.(6分)一张长为30cm,宽20cm的矩形纸片,如图1所示,将这张纸片的四个角各剪去一个边长相同的正方形后,把剩余部分折成一个无盖的长方体纸盒,如图1所示,如果折成的长方体纸盒的底面积为264cm2,求剪掉的正方形纸片的边长.22.(8分)已知关于的方程.(1)求证:方程一定有两个实数根;(2)若方程的两个实数根都是整数,求正整数k的值.23.(8分)问题提出:如图1,在等边△ABC中,AB=9,⊙C半径为3,P为圆上一动点,连结AP,BP,求AP+BP的最小值(1)尝试解决:为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)如图2,连结CP,在CB上取点D,使CD=1,则有又∵∠PCD=∠△∽△∴∴PD=BP∴AP+BP=AP+PD∴当A,P,D三点共线时,AP+PD取到最小值请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=6,AB=8,P为矩形内部一点,且PB=1,则AP+PC的最小值为.(请在图3中添加相应的辅助线)(3)拓展延伸:如图1,在扇形COD中,O为圆心,∠COD=120°,OC=1.OA=2,OB=3,点P是上一点,求2PA+PB的最小值,画出示意图并写出求解过程.24.(8分)在半圆O中,AB为直径,AC、AD为两条弦,且∠CAD+∠CAB=90°.(1)如图1,求证:弧AC等于弧CD;(2)如图2,点E在直径AB上,CE交AD于点F,若AF=CF,求证:AD=2CE;(3)如图3,在(2)的条件下,连接BD,若AE=4,BD=12,求弦AC的长.25.(10分)如图,已知抛物线y=﹣x2+x+4,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点.(1)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由.(2)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.26.(10分)如图,在平面直角坐标系中,抛物线交轴于点,交轴正半轴于点,与过点的直线相交于另一点,过点作轴,垂足为.(1)求抛物线的解析式.(2)点是轴正半轴上的一个动点,过点作轴,交直线于点,交抛物线于点.①若点在线段上(不与点,重合),连接,求面积的最大值.②设的长为,是否存在,使以点,,,为顶点的四边形是平行四边形?若存在,求出的值;若不存在,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据题目中函数解析式和二次函数的性质,可以逐一判断各选项即可.【详解】∵二次函数y=-x2+2x-3的图象开口向下,且以为对称轴的抛物线,A.当x>2,y随x的增大而减少,该选项错误;B.当x=2时,y有最大值-1,该选项正确;C.图像的顶点坐标为(2,-1),该选项错误;D.图像与x轴没有交点,该选项错误;故选:B.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的最值和顶点,关键是明确题意,利用二次函数的性质作答.2、C【解析】连接AC,根据线段垂直平分线的性质可得AB=AC=2,然后利用周长公式进行计算即可得答案.【详解】如图连接AC,,,,菱形ABCD的周长,故选C.【点睛】本题考查了菱形的性质、线段的垂直平分线的性质等知识,熟练掌握的灵活应用相关知识是解题的关键.3、D【解析】试题解析:根据题意,在反比例函数y=的图象上,当x1<x2<0时,y1<y2,故可知该函数在第二象限时,y随x的增大而增大,即1-2m<0,解得,m>.故选D.4、A【解析】根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.【详解】∵在矩形ABCD中,AB=4,BC=3,F是AB中点,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=,故选A.【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.5、B【分析】①由二次函数的图象开口方向知道a<0,与y轴交点知道c>0,由此即可确定ac的符号;②由于二次函数图象与x轴有两个交点即有两个不相等的实数根,由此即可判定的符号;③根据图象知道当x<0时,y不一定小于0,由此即可判定此结论是否正确;④根据图象与x轴交点的情况即可判定是否正确.【详解】解:∵图象开口向下,∴a<0,∵图象与y轴交于正半轴,则c>0,∴ac<0,故选项①正确;∵二次函数图象与x轴有两个交点即有两个不相等的实数根,即,故选项②正确;③当x<0时,有部分图象在y的上半轴即函数值y不一定小于0,故选项③错误;④利用图象与x轴交点都大于-1,故方程有两个大于-1的实数根,故选项④正确;故选:B.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:当时,,然后根据图象判断其值.6、C【分析】设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.【详解】设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,根据题意列出方程x(28-2x)=80,解得x1=4,x2=10因为8≤x<14∴与墙垂直的边为10m故答案为C.【点睛】本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x值.7、D【解析】根据概率公式,逐一求出各选项事件发生的概率,最后比较大小即可.【详解】解:A.朝上一面的数字恰好是6的概率为:1÷6=;B.朝上一面的数字是2的整数倍可以是2、4、6,有3种可能,故概率为:3÷6=;C.朝上一面的数字是3的整数倍可以是3、6,有2种可能,故概率为:2÷6=;D.朝上一面的数字不小于2可以是2、3、4、5、6,有5种可能,,故概率为:5÷6=∵<<<∴D选项事件发生的概率最大故选D.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.8、C【分析】分x≥0及x<0两种情况,利用“好点”的定义可得出关于x的一元二次方程,解之即可得出结论.【详解】当x≥0时,,即:,

解得:,(不合题意,舍去),当x<0时,,即:,

解得:,,∴函数的图象上的“好点”共有3个.

故选:C.【点睛】本题考查了一次函数图象上点的坐标特征及解一元二次方程,分x≥0及x<0两种情况,找出关于x的一元二次方程是解题的关键.9、A【详解】∵正比例函数y=mx(m≠0),y随x的增大而减小,∴该正比例函数图象经过第一、三象限,且m<0,∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴,综上所述,符合题意的只有A选项,故选A.10、D【分析】必然事件是指一定会发生的事件;不可能事件是指不可能发生的事件;随机事件是指可能发生也可能不发生的事件.根据定义,对每个选项逐一判断【详解】解:A选项,不可能事件;B选项,不可能事件;C选项,随机事件;D选项,必然事件;故选:D【点睛】本题考查了必然事件、不可能事件、随机事件,正确理解必然事件、不可能事件、随机事件的定义是本题的关键二、填空题(每小题3分,共24分)11、9.8【分析】求当t=0时函数值,即与x轴的两个交点,两个交点之间的距离即足球在空中飞行的时间.【详解】解:当t=0时,解得:∴足球在空中的飞行时间为9.8s故答案为:9.8【点睛】本题考查二次函数的实际应用,利用数形结合思想球解题,求抛物线与x轴的交点是本题的解题关键12、a<2且a≠1.【分析】利用一元二次方程根的判别式列不等式,解不等式求出a的取值范围.【详解】试题解析:∵关于x的一元二次方程(a-1)x2-2x+l=0有两个不相等的实数根,∴△=b2-4ac>0,即4-4×(a-2)×1>0,解这个不等式得,a<2,又∵二次项系数是(a-1),∴a≠1.故a的取值范围是a<2且a≠1.【点睛】本题考查的是一元二次方程根的判别式,根据方程有两不等的实数根,得到判别式大于零,求出a的取值范围,同时方程是一元二次方程,二次项系数不为零.13、-2【分析】把x=1代入已知方程可得关于m的方程,解方程即可求得答案.【详解】解:∵为一元二次方程的一个根,∴,解得:m=-2.故答案为:-2.【点睛】本题考查了一元二次方程的解的定义,属于应知应会题型,熟练掌握一元二次方程的解的概念是解题关键.14、1【分析】由及,得,再证△ADE∽△ABC,推出,代入值,即可求出BC.【详解】解:∵,,

∴∵DE∥BC,

∴△ADE∽△ABC,

∴,

∵,

∴,则BC=1,

故答案为:1.【点睛】本题考查了相似三角形的性质和判定的应用,注意:相似三角形的对应边的比相等.15、【分析】利用几何概率等于阴影部分的面积与三角形的面积之比即可得出答案.【详解】,,,∴是直角三角形,设圆的半径为r,利用三角形的面积有即解得∴阴影部分的面积为∵三角形的面积为∴飞镖落在阴影部分的概率为故答案为:.【点睛】本题主要考查几何概率,掌握几何概率的求法是解题的关键.16、或14【解析】点E在直线AC上,本题分两类讨论,翻折后点F在BC线段上或点F在CB延长线上,根据一线三角的相似关系求出线段长.【详解】解:按两种情况分析:①点F在线段BC上,如图所示,由折叠性质可知∠A=∠DFE=60°∵∠BFD+∠CFE=120°,∠BFD+∠BDF=120°∴∠BDF=∠CFE∵∠B=∠C∴△BDF∽△CFE,∴∵AB=4,BF:FC=1:3∴BF=1,CF=3设AE=x,则EF=AE=x,CE=4﹣x∴解得BD=,DF=∵BD+DF=AD+BD=4∴解得x=,经检验当x=时,4﹣x≠0∴x=是原方程的解②当点F在线段CB的延长线上时,如图所示,同理可知△BDF∽△CFE∴∵AB=4,BF:FC=1:3,可得BF=2,CF=6设AE=a,可知AE=EF=a,CE=a﹣4∴解得BD=,DF=∵BD+DF=BD+AD=4∴解得a=14经检验当a=14时,a﹣4≠0∴a=14是原方程的解,综上可得线段AE的长为或14故答案为或14【点睛】本题考查了翻折问题,根据点在不同的位置对问题进行分类,并通过一线三角形的相似关系建立方程是本题的关键.17、【分析】先把特殊角的三角函数值代入原式,再计算即得答案.【详解】解:原式=.故答案为:.【点睛】本题考查了特殊角的三角函数值,属于基础题型,熟记特殊角的三角函数值、正确计算是关键.18、【分析】由题意根据概率公式,求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率.【详解】解:∵一个布袋里装有3个红球和4个白球,共7个球,∴摸出一个球摸到红球的概率为:,故答案为:.【点睛】本题主要考查概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键.三、解答题(共66分)19、(1)y=-x2+3x+4;(2)a=或;(3)点P的坐标为(1,4)或(2,4)或(,4)【分析】(1)点C(0,4),则c=4,二次函数表达式为:y=-x2+bx+4,将点A的坐标代入上式,即可求解;

(2)△AOC与△FEB相似,则∠FBE=∠ACO或∠CAO,即:tan∠FEB=或4,即可求解;

(3)证明△PNF≌△BEF(AAS),PH=2,则-4a2+6a+4-4=|2|,即可求解.【详解】解:(1)将点A和点C的坐标代入上式得:0=-1-b+4,解得:b=3,故抛物线的表达式为:y=-x2+3x+4;(2)∵tan∠ACO==,△AOC与△FEB相似,则∠FBE=∠ACO或∠CAO,∴tan∠FBE=或4,∵四边形OEFG为正方形,则FE=OE=a,EB=4-a,则或,解得:a=或;(3)令y=-x2+3x+4=0,解得:x=4或-1,故点B(4,0);分别延长GF、HP交于点N,∵∠PFN+∠BFN=90°,∠FPN+∠PFN=90°,∴∠FPN=∠NFB,∵GN∥x轴,∴∠FPN=∠NFB=∠FBE,∵∠PNF=∠BEF=90°,FP=FB,∴△PNF≌△BEF(AAS),∴FN=FE=a,PN=EB=4-a,∴点P(2a,4),点H(2a,-4a2+6a+4),∵PH=2,即:-4a2+6a+4-4=±2,解得:a=1或或或(舍去),故:点P的坐标为(1,4)或(2,4)或(,4).【点睛】本题考查的是二次函数综合运用,涉及到三角形全等、正方形的性质、三角形相似等,其中(2)、(3),要注意分类求解,避免遗漏.20、(I)y=﹣;(II)当y≥2时,﹣2≤x<1【分析】(I)利用待定系数法可得反比例函数解析式;(II)利用反比例函数的解析式不求出的点,利用函数图象即可求得答案.【详解】(I)设解析式为y=,把点(2,﹣2)代入解析式得,﹣2=,解得:k=﹣4∴反比例函数的解析式y=﹣;(II)当y=2时,x=﹣2,如图,所以当y≥2时,﹣2≤x<1.【点睛】本题主要考查了反比例函数的性质以及待定系数法求反比例函数解析式,关键是正确求出函数解析式,画出函数图象的草图.21、4cm【解析】试题分析:设剪掉的正方形纸片的边长为xcm,则围成的长方体纸盒的底面长是(32-2x)cm,宽是(32-2x)cm,根据底面积等于1cm2列方程求解.解:设剪掉的正方形纸片的边长为xcm.由题意,得(32-2x)(22-2x)=1.整理,得x2-25x+84=2.解方程,得,(不符合题意,舍去).答:剪掉的正方形的边长为4cm.22、(1)证明见解析;(2)正整数.【分析】(1)证明根的判别式不小于0即可;

(2)根据公式法求出方程的两根,用k表示出方程的根,再根据方程的两个实数根都是整数,进而求出k的值.【详解】解:(1)证明:,∴方程一定有两个实数根.(2)解:,,,,∵方程的两个实数根都是整数,∴正整数1或1.23、(1)BCP,PCD,BCP,;(2)2;(3)作图与求解过程见解析,2PA+PB的最小值为.【分析】(1)连结AD,过点A作AF⊥CB于点F,AP+BP=AP+PD,要使AP+BP最小,AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即可求解;(2)在AB上截取BF=2,连接PF,PC,AB=8,PB=1,BF=2,证明△ABP∽△PBF,当点F,点P,点C三点共线时,AP+PC的值最小,即可求解;(3)延长OC,使CF=1,连接BF,OP,PF,过点F作FB⊥OD于点M,确定,且∠AOP=∠AOP,△AOP∽△POF,当点F,点P,点B三点共线时,2AP+PB的值最小,即可求解.【详解】解:(1)如图1,连结AD,过点A作AF⊥CB于点F,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,∵AC=9,AF⊥BC,∠ACB=60°∴CF=3,AF=;∴DF=CF﹣CD=3﹣1=2,∴AD=,∴AP+BP的最小值为;故答案为:;(2)如图2,在AB上截取BF=2,连接PF,PC,∵AB=8,PB=1,BF=2,∴,且∠ABP=∠ABP,∴△ABP∽△PBF,∴,∴PF=AP,∴AP+PC=PF+PC,∴当点F,点P,点C三点共线时,AP+PC的值最小,∴CF=,∴AP+PC的值最小值为2,故答案为:2;(3)如图3,延长OC,使CF=1,连接BF,OP,PF,过点F作FB⊥OD于点M,∵OC=1,FC=1,∴FO=8,且OP=1,OA=2,∴,且∠AOP=∠AOP∴△AOP∽△POF∴,∴PF=2AP∴2PA+PB=PF+PB,∴当点F,点P,点B三点共线时,2AP+PB的值最小,∵∠COD=120°,∴∠FOM=60°,且FO=8,FM⊥OM∴OM=1,FM=1,∴MB=OM+OB=1+3=7∴FB=,∴2PA+PB的最小值为.【点睛】本题主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,解本题的关键是根据材料中的思路构造出相似三角形..24、(1)详见解析;(2)详见解析;(3)4.【分析】(1)如图1,连接BC、CD,先证∠CBA=∠CAD,再证∠CDA=∠CAD,可得出AC=CD,即可推出结论;(2)过点C作CG⊥AD于点G,则∠CGA=90°,证CG垂直平分AD,得出AD=2AG,再证△ACG≌△CAE,推出AG=CE,即可得出AD=2CE;(3)取BD中点H,连接OH、OC,则BH=DH=BD=6,OH⊥BD,证Rt△OEC≌Rt△BHO,推出OE=BH=6,OC=OA=10,则在Rt△OEC中,求出CE的长,在Rt△AEC中,可求出AC的长.【详解】(1)证明:连接BC、CD,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∵∠CAB+∠CAD=90°,∴∠CBA=∠CAD,又∵∠CDA=∠CBA,∴∠CDA=∠CAD,∴AC=CD,∴;(2)过点C作CG⊥AD于点G,则∠CGA=90°,由(1)知AC=CD,∴CG垂直平分AD,∴AD=2AG,∵AF=CF,∴∠CAD=∠ACE,∵∠CAD+∠CAB=90°,∴∠ACE+∠CAB=90°,∴∠AEC=90°=∠CGA,∵AC=CA,∴△ACG≌△CAE(AAS),∴AG=CE,∴AD=2CE;(3)取BD中点H,连接OH、OC,则BH=DH=BD=6,OH⊥BD,∴∠OHB=90°=∠CEO,∵OA=OB,∴OH是△ABD的中位线,∴AD=2OH,由(2)知AD=2CE,∴OH=CE,∵OC=OB,∴Rt△OEC≌Rt△BHO(HL),∴OE=BH=6,∴OC=OA=AE+OE=4+6=10,∴在Rt△OEC中,CE2=OC2﹣OE2=82,∴在Rt△AEC中,AC==4.【点睛】本题考查了圆的有关概念及性质、全等三角形的判定与性质、勾股定理等,第证明∠AEC=90°和通过作适当的辅助线构造全等三角形是.解题的关键.25、(1)存在点P,使△PBC的面积最大,最大面积是2;(2)M点的坐标为(1﹣2,﹣1)、(2,6)、(6,1)或(1+2,﹣﹣1).【分析】(1)利用二次函数图象上点的坐标特征可求出点C的坐标,由点B、C的坐标,利用待定系数法即可求出直线BC的解析式,假设存在,设点P的坐标为(x,﹣x2+x+1),过点P作PD//y轴,交直线BC于点D,则点D的坐标为(x,﹣x+1),PD=﹣x2+2x,利用三角形的面积公式即可得出S△PBC关于x的函数关系式,再利用二次函数的性质即可解决最值问题;(2)设点M的坐标为(m,﹣m2+m+1),则点N的坐标为(m,﹣m+1),进而可得出MN=|﹣m2+2m|,结合MN=3即可得出关于m的含绝对值符号的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论