版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列说法:①概率为0的事件不一定是不可能事件;②试验次数越多,某情况发生的频率越接近概率;③事件发生的概率与实验次数无关;④在抛掷图钉的试验中针尖朝上的概率为,表示3次这样的试验必有1次针尖朝上.其中正确的是()A.①② B.②③ C.①③ D.①④2.一个扇形半径30cm,圆心角120°,用它作一个圆锥的侧面,则圆锥底面半径为()A.5cm B.10cm C.20cm D.30cm3.下列二次函数中有一个函数的图像与x轴有两个不同的交点,这个函数是()A. B. C. D.4.如图,反比例函数的大致图象为()A. B. C. D.5.如图,菱形ABCD与等边△AEF的边长相等,且E、F分别在BC、CD,则∠BAD的度数是()A.80° B.90° C.100° D.120°6.如图,在同一直角坐标系中,正比例函数y=kx+3与反比例函数的图象位置可能是()A. B. C. D.7.如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为()A. B. C. D.8.如图,扇形AOB中,半径OA=2,∠AOB=120°,C是弧AB的中点,连接AC、BC,则图中阴影部分面积是()A. B.C. D.9.抛物线y=2(x﹣2)2﹣1的顶点坐标是()A.(0,﹣1) B.(﹣2,﹣1) C.(2,﹣1) D.(0,1)10.如图,已知A(-3,3),B(-1,1.5),将线段AB向右平移5个单位长度后,点A、B恰好同时落在反比例函数(x>0)的图象上,则等于()A.3 B.4 C.5 D.611.如图,已知直线与轴交于点,与轴交于点,将沿直线翻折后,设点的对应点为点,双曲线经过点,则的值为()A.8 B.6 C. D.12.下列命题为假命题的是()A.直角都相等 B.对顶角相等C.同位角相等 D.同角的余角相等二、填空题(每题4分,共24分)13.如图,△ABC周长为20cm,BC=6cm,圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,则△AMN的周长为________cm.14.方程的解为________.15.抛物线y=﹣x2+2x﹣5与y轴的交点坐标为_____.16.已知x=1是关于x的一元二次方程2x2﹣x+a=0的一个根,则a的值是_____.17.若两个相似三角形的周长比是,则对应中线的比是________.18.已知抛物线,当时,的取值范围是______________三、解答题(共78分)19.(8分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.20.(8分)如图,已知△ABC的顶点A、B、C的坐标分别是A(﹣1,﹣1)、B(﹣4,﹣3)、C(﹣4,﹣1).(1)画出△ABC关于原点O中心对称的图形△A1B1C1;(2)将△ABC绕点A按顺时针方向旋转90°后得到△AB2C2,画出△AB2C2并求线段AB扫过的面积.21.(8分)计算:﹣12119+|﹣2|+2cos31°+(2﹣tan61°)1.22.(10分)已知二次函数.(1)当时,求函数图象与轴的交点坐标;(2)若函数图象的对称轴与原点的距离为2,求的值.23.(10分)(1)计算:2cos60°+4sin60°•tan30°﹣6cos245°(2)解方程:24.(10分)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.(1)写出点B的坐标;(2)在x轴上找一点D,连接BD,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如果点P从点A出发,以2cm/秒的速度沿AB向点B运动,同时点Q从点D出发,以1cm/秒的速度沿DA向点A运动.当一个点停止运动时,另一个点也随之停止运动.设运动时间为t.问是否存在这样的t使得△APQ与△ADB相似?如存在,请求出t的值;如不存在,请说明理由.25.(12分)已知抛物线经过A(0,2)、B(4,0)、C(5,-3)三点,当时,其图象如图所示.(1)求该抛物线的解析式,并写出该抛物线的顶点坐标;(2)求该抛物线与轴的另一个交点的坐标.26.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据概率和频率的概念对各选项逐一分析即可.【详解】①概率为0的事件是不可能事件,①错误;②试验次数越多,某情况发生的频率越接近概率,故②正确;③事件发生的概率是客观存在的,是确定的数值,故③正确;④根据概率的概念,④错误.故选:B【点睛】本题考查概率的意义,考查频率与概率的关系,本题是一个概念辨析问题.2、B【解析】试题解析:设此圆锥的底面半径为r,2πr=,r=10cm故选B.考点:弧长的计算.3、D【解析】试题分析:分别对A、B、C、D四个选项进行一一验证,令y=1,转化为一元二次方程,根据根的判别式来判断方程是否有根.A、令y=1,得x2=1,△=1-4×1×1=1,则函数图形与x轴没有两个交点,故A错误;B、令y=1,得x2+4=1,△=1-4×1×1=-4<1,则函数图形与x轴没有两个交点,故B错误;C、令y=1,得3x2-2x+5=1,△=4-4×3×5=-56<1,则函数图形与x轴没有两个交点,故C错误;D、令y=1,得3x2+5x-1=1,△=25-4×3×(-1)=37>1,则函数图形与x轴有两个交点,故D正确;故选D.考点:本题考查的是抛物线与x轴的交点点评:解答本题的关键是熟练掌握当二次函数与x轴有两个交点时,b2-4ac>1,与x轴有一个交点时,b2-4ac=1,与x轴没有交点时,b2-4ac<1.4、B【分析】比例系数k=1>0,根据反比例函数图像的特点可判断出函数图像.【详解】∵比例系数k=1>0∴反比例函数经过一、三象限故选:B.【点睛】本题考查反比例函数图像的分布,当k>0时,函数位于一、三象限.当k<0时,函数位于二、四象限.5、C【解析】试题分析:根据菱形的性质推出∠B=∠D,AD∥BC,根据平行线的性质得出∠DAB+∠B=180°,根据等边三角形的性质得出∠AEF=∠AFE=60°,AF=AD,根据等边对等角得出∠B=∠AEB,∠D=∠AFD,设∠BAE=∠FAD=x,根据三角形的内角和定理得出方程x+2(180°﹣60°﹣2x)=180°,求出方程的解即可求出答案.解:∵四边形ABCD是菱形,∴∠B=∠D,AD∥BC,∴∠DAB+∠B=180°,∵△AEF是等边三角形,AE=AB,∴∠AEF=∠AFE=60°,AF=AD,∴∠B=∠AEB,∠D=∠AFD,由三角形的内角和定理得:∠BAE=∠FAD,设∠BAE=∠FAD=x,则∠D=∠AFD=180°﹣∠EAF﹣(∠BAE+∠FAD)=180°﹣60°﹣2x,∵∠FAD+∠D+∠AFD=180°,∴x+2(180°﹣60°﹣2x)=180°,解得:x=20°,∴∠BAD=2×20°+60°=100°,故选C.考点:菱形的性质;全等三角形的判定与性质;等边三角形的性质.6、A【解析】先根据一次函数的性质判断出k取值,再根据反比例函数的性质判断出k的取值,二者一致的即为正确答案.【详解】当k>0时,有y=kx+3过一、二、三象限,反比例函数的过一、三象限,A正确;由函数y=kx+3过点(0,3),可排除B、C;当k<0时,y=kx+3过一、二、四象限,反比例函数的过一、三象限,排除D.故选A.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.7、A【分析】结合点P的运动,将点P的运动路线分成O→A、A→B、B→C三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【详解】设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S=a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选A.点睛:本题考查了反比例函数图象性质、锐角三角函数性质,解题的关键是明确点P在O→A、A→B、B→C三段位置时三角形OMP的面积计算方式.8、A【解析】试题分析:连接AB、OC,ABOC,所以可将四边形AOBC分成三角形ABC、和三角形AOB,进行求面积,求得四边形面积是,扇形面积是S=πr2=,所以阴影部分面积是扇形面积减去四边形面积即.故选A.9、C【解析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可.【详解】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴y=2(x﹣2)2﹣1的顶点坐标是(2,﹣1).故选:C.【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.10、D【分析】根据点平移规律,得到点A平移后的点的坐标为(2,3),由此计算k值.【详解】∵已知A(-3,3),B(-1,1.5),将线段AB向右平移5个单位长度后,∴点A平移后的点坐标为(2,3),∵点A、B恰好同时落在反比例函数(x>0)的图象上,∴,故选:D.【点睛】此题考查点平移的规律,点沿着x轴左右平移的规律是:左减右加;点沿着y轴上下平移的规律是:上加下减,熟记规律是解题的关键.11、A【分析】作轴于,轴于,设.依据直线的解析式即可得到点和点的坐标,进而得出,,再根据勾股定理即可得到,进而得出,即可得到的值.【详解】解:作轴于,轴于,如图,设,当时,,则,当时,,解得,则,∵沿直线翻折后,点的对应点为点,∴,,在中,,①在中,,②①-②得,把代入①得,解得,∴,∴,∴.故选A.【点睛】此题考查反比例函数图象上点的坐标特征,解题关键在于掌握反比例函数(为常数,)的图象是双曲线,图象上的点的横纵坐标的积是定值,即.12、C【解析】根据直角、对顶角的概念、同位角的定义、余角的概念判断.【详解】解:A、直角都相等,是真命题;B、对顶角相等,是真命题;C、两直线平行,同位角相等,则同位角相等是假命题;D、同角的余角相等,是真命题;故选:C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题(每题4分,共24分)13、8【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线,如下图,连接各切点,有切线长定理易得,BE=BF,CE=CG,ME=MH,NG=NH,∵△ABC周长为20cm,BC=6cm,∴BC=CE+BE=CG+BF=6cm,∴△AMN的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm故答案是8【点睛】本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.14、【解析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,
解得x=±1.
故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.注意:
(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.
(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.15、(0,﹣5)【分析】要求抛物线与y轴的交点,即令x=0,解方程.【详解】解:把x=0代入y=﹣x2+2x﹣5,求得y=﹣5,则抛物线y=﹣x2+2x﹣5与y轴的交点坐标为(0,﹣5).故答案为(0,﹣5).【点睛】本题考查了抛物线与轴的交点坐标,正确掌握令或令是解题的关键.16、﹣1.【解析】将x=1代入方程得关于a的方程,解之可得.【详解】解:将x=1代入方程得:2-1+a=0,解得:a=-1,故答案为:-1.【点睛】本题主要考查一元二次方程的解.17、4:9【分析】相似三角形的面积之比等于相似比的平方.【详解】解:两个相似三角形的周长比是,∴两个相似三角形的相似比是,∴两个相似三角形对应中线的比是,故答案为.18、1≤y<9【分析】根据二次函数的图象和性质求出抛物线在上的最大值和最小值即可.【详解】∴抛物线开口向上∴当时,y有最小值,最小值为1当时,y有最大值,最小值为∴当时,的取值范围是故答案为:.【点睛】本题主要考查二次函数在一定范围内的最大值和最小值,掌握二次函数的图象和性质是解题的关键.三、解答题(共78分)19、(1)证明见解析;(2).【分析】(1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.(2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.【详解】解:(1)证明:连接OD,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD⊥DP.∵OD为半径,∴DP是⊙O切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm,∴OP=6cm,由勾股定理得:DP=3cm.∴图中阴影部分的面积20、(1)见解析;(2)【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出B,C的对应点B2,C2即可,再利用扇形的面积公式计算即可.【详解】解(1)如图,△A1B1C1即为所求.(2)如图,△AB2C2即为所求.线段AB扫过的面积==【点睛】本题考查作图旋转变换,扇形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、2【解析】直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.【详解】解:原式=﹣1+2﹣+1=2【点睛】此题主要考查了实数运算,正确化简各数是解题关键.22、(1)和;(2)或-1.【分析】(1)把k=2代入,得.再令y=0,求出x的值,即可得出此函数图象与x轴的交点坐标;(2)函数图象的对称轴与原点的距离为2,列出方程求解即可.【详解】(1)∵,∴,令,则,解得,∴函数图象与轴的交点坐标为和.(2)∵函数图象的对称轴与原点的距离为2,∴,解得或-1.【点睛】本题考查了抛物线与x轴的交点,二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2-4ac决定抛物线与x轴的交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.23、(1)0;(2),【分析】(1)根据特殊角的三角函数值代入计算即可;(2)对原方程变形后利用因式分解法求解即可.【详解】解:(1)2cos60°+4sin60°•tan30°﹣6cos245°(2)或解得:,【点睛】本题考查特殊角的三角函数值混合运算和因式分解法解一元二次方程,解题的关键是熟记特殊角的三角函数值和熟练掌握因式分解法解一元二次方程.24、(1)点B的坐标为(1,3);(2)点D的坐标为(,0);(3)存在,当t=s或s时,△APQ与△ADB相似.【分析】(1)根据正切的定义求出BC,得到点B的坐标;(2)根据△ABC∽△ADB,得到=,代入计算求出AD,得到点D的坐标;(3)分△APQ∽△ABD、△AQP∽△ABD两种情况,根据相似三角形的性质列式计算即可.【详解】解:(1)∵A(﹣3,0),C(1,0),∴AC=4,∵∠ACB=90°,tan∠BAC=,∴=,即=,解得,BC=3,∴点B的坐标为(1,3);(2)如图1,作BD⊥BA交x轴于点D,则∠ACB=∠ABD=90°,又∠A=∠A,∴△ABC∽△ADB,∴=,在Rt△ABC中,AB===5,∴=,解得,AD=,则OD=AD﹣AO=,∴点D的坐标为(,0);(3)存在,由题意得,AP=2t
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度草牧场承包经营权租赁与农业保险联动合同3篇
- 二零二五版集装箱租赁及售后服务合同样本3篇
- 2025年度数字经济产业园区建设合同3篇
- 2025年移动办公小程序定制开发与企业管理服务合同2篇
- 2024版成都市存量房屋买卖合同实施条例
- 二零二五版智能家居定制家具采购与售后保障合同3篇
- 2025年度餐饮行业食品安全风险评估合同21篇
- 二零二五河南事业单位100人招聘合同范本解读与使用指南3篇
- 2024起重机械进出口贸易合同规范范本3篇
- 二零二五白酒定制酒生产与销售合作合同3篇
- 春节英语介绍SpringFestival(课件)新思维小学英语5A
- 进度控制流程图
- 2023年江苏省南京市中考化学真题
- 【阅读提升】部编版语文五年级下册第四单元阅读要素解析 类文阅读课外阅读过关(含答案)
- 供电副所长述职报告
- 现在完成时练习(短暂性动词与延续性动词的转换)
- 产品质量监控方案
- 物业总经理述职报告
- 新起点,新发展心得体会
- 深圳大学学校简介课件
- 校园欺凌问题成因及对策分析研究论文
评论
0/150
提交评论