版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.点到轴的距离是()A. B. C. D.2.﹣的绝对值为()A.﹣2 B.﹣ C. D.13.如图,PA,PB切⊙O于点A,B,点C是⊙O上一点,且∠P=36°,则∠ACB=()A.54° B.72° C.108° D.144°4.在一个不透明的布袋中装有9个白球和若干个黑球,它们除颜色不同外,其余均相同。若从中随机摸出一个球,摸到白球的概率是,则黑球的个数为()A.3 B.12 C.18 D.275.下列事件中,为必然事件的是()A.购买一张彩票,中奖B.打开电视,正在播放广告C.任意购买一张电影票,座位号恰好是“排号”D.一个袋中只装有个黑球,从中摸出一个球是黑球6.如图,△ABC中,点D,E在边AB,AC上,DE∥BC,△ADE与△ABC的周长比为2∶5,则AD∶DB为()A.2∶5 B.4∶25 C.2∶3 D.5∶27.已知和的半径长分别是方程的两根,且,则和的位置关系为()A.相交 B.内切 C.内含 D.外切8.铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式为y=-x2+x+.则该运动员此次掷铅球的成绩是()A.6m B.12m C.8m D.10m9.如图图形中,是轴对称图形又是中心对称图形的是()A. B.C. D.10.如图,⊙C过原点,与x轴、y轴分别交于A、D两点.已知∠OBA=30°,点D的坐标为(0,2),则⊙C半径是()A. B. C. D.2二、填空题(每小题3分,共24分)11.在平面直角坐标系中,点为原点,抛物线与轴交于点,以为一边向左作正方形,点为抛物线的顶点,当是锐角三角形时,的取值范围是__________.12.小华在距离路灯6米的地方,发现自己在地面上的影长是2米,若小华的身高为1.6米,那么路灯离地面的高度是_____米.13.在一个不透明的袋子中装有除颜色外其余均相同的7个小球,其中红球2个,黑球5个,若再放入m个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于,则m的值为.14.如图,菱形ABCD的三个顶点在二次函数的图象上,点A、B分别是该抛物线的顶点和抛物线与y轴的交点,则点D的坐标为____________.15.如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是矩形.16.如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB=.17.如图,在平面直角坐标系中,点,点,作第一个正方形且点在上,点在上,点在上;作第二个正方形且点在上,点在上,点在上…,如此下去,其中纵坐标为______,点的纵坐标为______.18.若关于x的方程有两个不相等的实数根,则a的取值范围是________.三、解答题(共66分)19.(10分)某商场“六一”期间进行一个有奖销售的活动,设立了一个可以自由转动的转盘(如图),并规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).下表是此次促销活动中的一组统计数据:转动转盘的次数n1002004005008001000落在“可乐”区域的次数m60122240298604落在“可乐”区域的频率0.60.610.60.590.604(1)计算并完成上述表格;(2)请估计当n很大时,频率将会接近__________;假如你去转动该转盘一次,你获得“可乐”的概率约是__________;(结果精确到0.1)(3)在该转盘中,表示“车模”区域的扇形的圆心角约是多少度?20.(6分)已知,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P,使PA+PC的值最小?如果存在,请求出点P的坐标,如果不存在,请说明理由;(3)设点M在抛物线的对称轴上,当△MAC是直角三角形时,求点M的坐标.21.(6分)某校八年级学生在一起射击训练中,随机抽取10名学生的成绩如下表,回答问题:环数6789人数152(1)填空:_______;(2)10名学生的射击成绩的众数是_______环,中位数是_______环;(3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有_______名是优秀射手.22.(8分)随着技术的发展进步,某公司2018年采用的新型原料生产产品.这种新型原料的用量y(吨)与月份x之间的关系如图1所示,每吨新型原料所生产的产品的售价z(万元)与月份x之间的关系如图2所示.已知将每吨这种新型原料加工成的产品的成本为20万元.(1)求出该公司这种新型原料的用量y(吨)与月份x之间的函数关系式;(2)若该公司利用新型原料所生产的产品当月都全部销售,求哪个月利润最大,最大利润是多少?23.(8分)某体育老师统计了七年级甲、乙两个班女生的身高,并绘制了以下不完整的统计图.请根据图中信息,解决下列问题:(1)两个班共有女生多少人?(2)将频数分布直方图补充完整;(3)求扇形统计图中部分所对应的扇形圆心角度数;(4)身高在的5人中,甲班有3人,乙班有2人,现从中随机抽取两人补充到学校国旗队.请用列表法或画树状图法,求这两人来自同一班级的概率.24.(8分)如图,已知抛物线与轴交于、两点,,交轴于点,对称轴是直线.(1)求抛物线的解析式及点的坐标;(2)连接,是线段上一点,关于直线的对称点正好落在上,求点的坐标;(3)动点从点出发,以每秒2个单位长度的速度向点运动,过作轴的垂线交抛物线于点,交线段于点.设运动时间为()秒.若与相似,请求出的值.25.(10分)已知点在二次函数的图象上,且当时,函数有最小值1.(1)求这个二次函数的表达式.(1)如果两个不同的点,也在这个函数的图象上,求的值.26.(10分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax2+bx+c=0的两个根为(2)y随x的增大而减小的自变量x的取值范围为;(3)若方程ax2+bx+c=k有两个不相等的实数根时,k的取值范围为;(4)求出此抛物线的解析式.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据点的坐标的性质即可得.【详解】由点的坐标的性质得,点P到x轴的距离为点P的纵坐标的绝对值则点到轴的距离是故选:C.【点睛】本题考查了点的坐标的性质,掌握理解点的坐标的性质是解题关键.2、C【解析】分析:根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.详解:﹣的绝对值为|-|=-(﹣)=.点睛:主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.3、B【解析】连接AO,BO,∠P=36°,所以∠AOB=144°,所以∠ACB=72°.故选B.4、C【分析】设黑球个数为,根据概率公式可知白球个数除以总球数等于摸到白球的概率,建立方程求解即可.【详解】设黑球个数为,由题意得解得:故选C.【点睛】本题考查根据概率求数量,熟练掌握概率公式建立方程是解题的关键.5、D【分析】根据必然事件的概念对各选项分析判断即可.【详解】解:A、购买一张彩票,有可能中奖,也有可能不中奖,是随机事件,故A不合题意;B、打开电视,可能正在播放广告,也可能在播放其他节目,是随机事件,故B不合题意;C、购买电影票时,可能恰好是“7排8号”,也可能是其他位置,是随机事件,故C不合题意;D、从只装有5个黑球的袋子中摸出一个球,摸出的肯定是黑球,是必然事件,故D符合题意;故选D.【点睛】本题主要考查确定事件;在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫做必然发生的事件,简称必然事件.6、C【分析】由题意易得,根据两个相似三角形的周长比等于相似比可直接得解.【详解】,,△ADE与△ABC的周长比为2∶5,,.故选C.【点睛】本题主要考查相似三角形的性质,关键是根据两个三角形相似,那么它们的周长比等于相似比.7、A【解析】解答此题,先要求一元二次方程的两根,然后根据圆与圆的位置关系判断条件,确定位置关系.圆心距<两个半径和,说明两圆相交.【详解】解:解方程x2-6x+8=0得:
x1=2,x2=4,
∵O1O2=5,x2-x1=2,x2+x1=6,
∴x2-x1<O1O2<x2+x1.
∴⊙O1与⊙O2相交.
故选A.【点睛】此题综合考查一元二次方程的解法及两圆的位置关系的判断,关键解出两圆半径.8、D【分析】依题意,该二次函数与x轴的交点的x值为所求.即在抛物线解析式中.令y=0,求x的正数值.【详解】把y=0代入y=-x1+x+得:-x1+x+=0,解之得:x1=2,x1=-1.又x>0,解得x=2.故选D.9、D【解析】试题解析:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转后它的两部分能够重合;即不满足中心对称图形的定义,故此选项不合题意;B、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转后它的两部分能够重合;即不满足中心对称图形的定义,故此选项不合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形,故此选项不合题意;D、是轴对称图形,又是中心对称图形,故此选项符合题意;故选D.10、B【解析】连接AD∵∠AOD=90°,∴AD是圆的直径.在直角三角形AOD中,∠D=∠B=30°,OD=2,∴AD=,则圆的半径是.故选B.点睛:连接AD.根据90°的圆周角所对的弦是直径,得AD是直径,根据等弧所对的圆周角相等,得∠D=∠B=30°,运用解直角三角形的知识即可求解.二、填空题(每小题3分,共24分)11、或【分析】首先由抛物线解析式求出顶点A的坐标,然后再由对称轴可判定△AHP为等腰直角三角形,故当是锐角三角形时,,即可得出的取值范围.【详解】∵∴顶点A的坐标为令PB与对称轴相交于点H,如图所示∴PH=AH,即△AHP为等腰直角三角形∴当是锐角三角形时,,∴BP=OP,P(0,c)∴或故答案为或.【点睛】此题主要考查二次函数图象与几何图形的综合运用,解题关键是找出临界点直角三角形,即可得出取值范围.12、6.1【解析】解:设路灯离地面的高度为x米,根据题意得:,解得:x=6.1.故答案为6.1.13、1.【解析】试题分析:根据题意得:=,解得:m=1.故答案为1.考点:概率公式.14、(2,).【详解】解:由题意可知:抛物线y=ax2-2ax+(a<0)的对称轴是直线x=1,与y轴的交点坐标是(2,),即点B的坐标是(2,)由菱形ABCD的三个顶点在二次函数y=ax2-2ax+(a<0)的图象上,点A,B分别是抛物线的顶点和抛物线与y轴的交点,∴点B与点D关于直线x=1对称,得到点D的坐标为(2,).故答案为(2,).15、AB⊥CD【解析】解:需添加条件AB⊥DC,∵、、、分别为四边形中、、、中点,∴,∴,.∴四边形为平行四边形.∵E、H是AD、AC中点,
∴EH∥CD,
∵AB⊥DC,EF∥HG
∴EF⊥EH,
∴四边形EFGH是矩形.
故答案为:AB⊥DC.16、4【解析】∵AB⊥BD,ED⊥BD∴∠B=∠D=90°,∠A+∠ACB=90°∵AC⊥CE,即∠ECD+∠ACB=90°∴∠A=∠ECD∴△ABC∽△CDE∴∴AB=417、【分析】先确定直线AB的解析式,然后再利用正方形的性质得出点C1和C2的纵坐标,归纳规律,然后按规律求解即可.【详解】解:设直线AB的解析式y=kx+b则有:,解得:所以直线仍的解析式是:设C1的横坐标为x,则纵坐标为∵正方形OA1C1B1∴x=y,即,解得∴点C1的纵坐标为同理可得:点C2的纵坐标为=∴点Cn的纵坐标为.故答案为:,.【点睛】本题属于一次函数综合题,主要考查了运用待定系数法求一次函数的解析式、正方形的性质、一次函数图象上点的坐标特点等知识,掌握数形结合思想是解答本题的关键.18、且【分析】根据根的判别式∆>0,且二次项系数a-2≠0列式求解即可.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.【详解】由题意得,解得且,故答案为:且.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.解答时要注意二次项的系数不能等于零.三、解答题(共66分)19、(1)472,0.596;(2)0.6,0.6;(3)144°.【解析】试题分析:在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率,(1)当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率,(2)利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P,(3)利用频率估计出的概率是近似值.试题解析:(1)如下表:转动转盘的次数n1002004005008001000落在“可乐”区域的次数m60122240298472604落在“可乐”区域的频率0.60.610.60.5960.590.604(2)0.6;0.6(3)由(2)可知落在“车模”区域的概率约是0.4,从而得到圆心角的度数约是360°×0.4=144°.20、(1);(2)当的值最小时,点P的坐标为;(3)点M的坐标为、、或.【解析】由点A、C的坐标,利用待定系数法即可求出抛物线的解析式;连接BC交抛物线对称轴于点P,此时取最小值,利用二次函数图象上点的坐标特征可求出点B的坐标,由点B、C的坐标利用待定系数法即可求出直线BC的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P的坐标;设点M的坐标为,则,,,分、和三种情况,利用勾股定理可得出关于m的一元二次方程或一元一次方程,解之可得出m的值,进而即可得出点M的坐标.【详解】解:将、代入中,得:,解得:,抛物线的解析式为.连接BC交抛物线对称轴于点P,此时取最小值,如图1所示.当时,有,解得:,,点B的坐标为.抛物线的解析式为,抛物线的对称轴为直线.设直线BC的解析式为,将、代入中,得:,解得:,直线BC的解析式为.当时,,当的值最小时,点P的坐标为.设点M的坐标为,则,,.分三种情况考虑:当时,有,即,解得:,,点M的坐标为或;当时,有,即,解得:,点M的坐标为;当时,有,即,解得:,点M的坐标为综上所述:当是直角三角形时,点M的坐标为、、或【点睛】本题考查待定系数法求二次一次函数解析式、二次一次函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:由点的坐标,利用待定系数法求出抛物线解析式;由两点之间线段最短结合抛物线的对称性找出点P的位置;分、和三种情况,列出关于m的方程.21、(1)1;(1)2,2;(3)3【分析】(1)利用总人数减去其它环的人数即可;(1)根据众数的定义和中位数的定义即可得出结论;(3)先计算出9环(含9环)的人数占总人数的百分率,然后乘500即可.【详解】解:(1)(名)故答案为:1.(1)由表格可知:10名学生的射击成绩的众数是2环;这10名学生的射击成绩的中位数应是从小到大排列后,第5名和第6名成绩的平均数,∴这10名学生的射击成绩的中位数为(2+2)÷1=2环.故答案为:2;2.(3)9环(含9环)的人数占总人数的1÷10×3%=10%∴优秀射手的人数为:500×10%=3(名)故答案为:3.【点睛】此题考查的是众数、中位数和数据统计问题,掌握众数和中位数的定义和百分率的求法是解决此题的关键.22、(1);(2)四月份利润最大,最大为1920元【分析】(1)根据图象利用待定系数法确定函数的解析式即可;(2)配方后确定最值即可.【详解】解:(1)1﹣6月份是一次函数,设y=kx+b,把点(1,50),(6,100)代入,得:,解得:,∴;(2)设利润为w元,当7≤x≤12时,w=100×35=3500元.当1≤x≤6时,w=(x﹣20)y=﹣30x2+240x+1440=﹣30(x﹣4)2+1920,故当x=4时,w取得最大值1920,即四月份利润最大,最大为1920元.【点睛】本题考查了二次函数的实际问题中最大利润问题,解题的关键是求出函数解析式,熟悉二次函数的性质.23、(1)50;(2)详见解析;(3);(4)【分析】(1)根据D的人数除以所占的百分比即可的总人数;(2)根据C的百分比乘以总人数,可得C的人数,再根据总人数减去A、B、C、D、F,便可计算的E的人数,分别在直方图上表示即可.(3)根据直方图上E的人数比总人数即可求得的E百分比,再计算出圆心角即可.(4)画树状图统计总数和来自同一班级的情况,再计算概率即可.【详解】解:(1)总人数为人,答:两个班共有女生50人;(2)C部分对应的人数为人,部分所对应的人数为;频数分布直方图补充如下:(3)扇形统计图中部分所对应的扇形圆心角度数为;(4)画树状图:共有20种等可能的结果数,其中这两人来自同一班级的情况占8种,所以这两人来自同一班级的概率是.【点睛】本题是一道数据统计的综合性题目,难度不大,这类题目,往往容易得分,应当熟练的掌握.24、(1),点坐标为;(2)F;(3)【分析】(1)先求出点A,B的坐标,将A、B的坐标代入中,即可求解;
(2)确定直线BC的解析式为y=−x+3,根据点E、F关于直线x=1对称,即可求解;
(3)若与相似,则或,即可求解;【详解】解:(1)∵点、关于直线对称,,∴,.代入中,得:,解,∴抛物线的解析式为.∴点坐标为;(2)设直线的解析式为,则有:,解得,∴直线的解析式为.∵点、关于直线对称,又到对称轴的距离为1,∴.∴点的横坐标为2,将代入中,得:,∴F(2,1);(3)秒时,.如图当时∴,∴,.①若,则,即(舍去),或.②若,则,即(舍去),或(舍去)∴.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.25、(1);(1)【分析】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《分子筛酸性及其吸附脱硫性能的理论计算研究》
- 《声乐专业之视唱练耳教学研究》
- 《供应链金融对中小企业融资约束的缓解作用研究》
- 2024年度旋转门维修与销售合同3篇
- 《Ф120螺栓球M24高强螺栓连接节点超低周疲劳性能研究》
- 2024年度环保技术引进不可撤销居间服务协议3篇
- 《SS公司现金流管理问题研究》
- 《手机端网店专业性对消费者购买意愿的影响研究》
- 《人参皂苷CK调控佐剂性关节炎大鼠成纤维样滑膜细胞糖酵解的作用及机制》
- 2024年度合作开发房地产合同土地使用权与合作方式3篇
- 【MOOC】法理学-西南政法大学 中国大学慕课MOOC答案
- 辽宁省普通高中2024-2025学年高一上学期12月联合考试语文试题(含答案)
- 储能运维安全注意事项
- 2024蜀绣行业市场趋势分析报告
- 电力法律法规培训
- 2024年世界职业院校技能大赛“智能网联汽车技术组”参考试题库(含答案)
- 【课件】校园安全系列之警惕“死亡游戏”主题班会课件
- 化工企业冬季安全生产检查表格
- 2024年工程劳务分包联合协议
- 蜜雪冰城员工合同模板
- 广东省深圳市龙岗区2024-2025学年三年级上学期11月期中数学试题(含答案)
评论
0/150
提交评论