




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省郑州市第四中学2025届九年级数学第一学期期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31° B.28° C.62° D.56°2.如图,已知正方形ABCD的边长为2,点E、F分别为AB、BC边的中点,连接AF、DE相交于点M,则∠CDM等于A. B. C. D.3.从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球,由此估计口袋中大约有多少个白球()A.10个 B.20个 C.30个 D.无法确定4.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为(
)A. B. C. D.5.如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)()A.24﹣4π B.32﹣4π C.32﹣8π D.166.在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则等于()A. B. C. D.7.如图为O、A、B、C四点在数线上的位置图,其中O为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1) B.﹣(x﹣1) C.x+1 D.x﹣18.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米 B.800tanα米 C.米 D.米9.下列事件为必然事件的是()A.打开电视机,正在播放新闻 B.任意画一个三角形,其内角和是C.买一张电影票,座位号是奇数号 D.掷一枚质地均匀的硬币,正面朝上10.如图,A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段,若S阴影=1则S1+S2=()A.4 B.5 C.6 D.811.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=40°,则∠BAD为()A.40° B.50° C.60° D.70°12.抛物线的顶点在()A.x轴上 B.y轴上 C.第三象限 D.第四象限二、填空题(每题4分,共24分)13.某园进行改造,现需要修建一些如图所示圆形(不完整)的门,根据实际需要该门的最高点C距离地面的高度为2.5m,宽度AB为1m,则该圆形门的半径应为_____m.14.计算:cos45°=______.15.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式,则火箭升空的最大高度是___m16.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为_____.17.如图,在矩形中,在上,在矩形的内部作正方形.当,时,若直线将矩形的面积分成两部分,则的长为________.18.如图,在扇形OAB中,∠AOB=90°,半径OA=1.将扇形OAB沿过点B的直线折叠.点O恰好落在延长线上点D处,折痕交OA于点C,整个阴影部分的面积_____.三、解答题(共78分)19.(8分)已知抛物线,求证:无论为何值,抛物线与轴总有两个交点.20.(8分)已知关于的方程(1)判断方程根的情况(2)若两根异号,且正根的绝对值较大,求整数的值.21.(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.22.(10分)计算:(1);(2).23.(10分)先化简,后求值:,其中x=﹣1.24.(10分)定义:如图1,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,若∠MPN绕点P旋转时始终满足OM•ON=OP2,则称∠MPN是∠AOB的“相关角”.(1)如图1,已知∠AOB=60°,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,且∠MPN=150°.求证:∠MPN是∠AOB的“相关角”;(2)如图2,已知∠AOB=α(0°α90°),OP=3,若∠MPN是∠AOB的“相关角”,连结MN,用含α的式子分别表示∠MPN的度数和△MON的面积;(3)如图3,C是函数(x0)图象上的一个动点,过点C的直线CD分别交x轴和y轴于点A,B两点,且满足BC=3CA,∠AOB的“相关角”为∠APB,请直接写出OP的长及相应点P的坐标.25.(12分)如图,AB是⊙O的直径,点C是⊙O上一点,AC平分∠DAB,直线DC与AB的延长线相交于点P,AD与PC延长线垂直,垂足为点D,CE平分∠ACB,交AB于点F,交⊙O于点E.(1)求证:PC与⊙O相切;(2)求证:PC=PF;(3)若AC=8,tan∠ABC=,求线段BE的长.26.天猫商城某网店销售童装,在春节即将将来临之际,开展了市场调查发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件;如果每件童装降价1元,那么平均每天可售出2件.(1)假设每件童装降价元时,每天可销售件,每件盈利元;(用含人代数式表示)(2)每件童装降价多少元时,平均每天盈利最多?每天最多盈利多少元?
参考答案一、选择题(每题4分,共48分)1、D【解析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.2、A【分析】根据正方形的特点可知∠CDM=∠DEA,利用勾股定理求出DE,根据余弦的定义即可求解.【详解】∵CD∥AB,∴∠CDM=∠DEA,∵E是AB中点,∴AE=AB=1∴DE=∴∠CDM=∠DEA==故选A.【点睛】此题主要考查余弦的求解,解题的关键是熟知余弦的定义.3、B【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是,设口袋中大约有x个白球,则,解得x=1.经检验:x=1是原方程的解故选B.4、A【解析】试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,∴这个斜坡的水平距离为:=10m,∴这个斜坡的坡度为:50:10=5:1.故选A.点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.5、A【解析】试题分析:连接AD,OD,∵等腰直角△ABC中,∴∠ABD=45°.∵AB是圆的直径,∴∠ADB=90°,∴△ABD也是等腰直角三角形,∴.∵AB=8,∴AD=BD=4,∴S阴影=S△ABC-S△ABD-S弓形AD=S△ABC-S△ABD-(S扇形AOD-S△ABD)=×8×8-×4×4-+××4×4=16-4π+8=24-4π.故选A.考点:扇形面积的计算.6、A【解析】试题分析:如图,∵四边形ABCD为平行四边形,∴ED∥BC,BC=AD,∴△DEF∽△BCF,∴,设ED=k,则AE=2k,BC=3k,∴==,故选A.考点:1.相似三角形的判定与性质;2.平行四边形的性质.7、B【解析】分析:首先根据AC=1,C点所表示的数为x,求出A表示的数是多少,然后根据OA=OB,求出B点所表示的数是多少即可.详解:∵AC=1,C点所表示的数为x,∴A点表示的数是x﹣1,又∵OA=OB,∴B点和A点表示的数互为相反数,∴B点所表示的数是﹣(x﹣1).故选B.点睛:此题主要考查了在数轴上表示数的方法,以及数轴的特征和应用,要熟练掌握.8、D【解析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题.【详解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故选D.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.9、B【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【详解】∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是,是必然事件,符合题意.故选B.【点睛】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、D【分析】B是曲线上的点,经过A、B两点向x轴、y轴作垂线段围成的矩形面积都是5,从而求出S1和S2的值即可【详解】∵A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段围成的矩形面积都是5,,∵S阴影=1,∴S1=S2=4,即S1+S2=8,故选D【点睛】本题主要考查反比例函数上的点向坐标轴作垂线围成的矩形面积问题,难度不大11、B【分析】连接BD,根据直径所对的圆周角是直角可得∠ADB的度数,然后在根据同弧所对的圆周角相等即可解决问题.【详解】解:如图,连接BD.∵AB是直径,∴∠ADB=90°,∵∠B=∠C=40°,∴∠DAB=90°﹣40°=50°,故选:B.【点睛】本题考查的是直径所对的圆周角是直角与同弧所对的圆周角相等的知识,能够连接BD是解题的关键.12、B【分析】将解析式化为顶点式即可得到答案.【详解】=2(x+0)²-4得:对称轴为y轴,则顶点坐标为(0,-4),在y轴上,故选B.二、填空题(每题4分,共24分)13、【分析】过圆心作弦AB的垂线,运用垂径定理和勾股定理即可得到结论.【详解】过圆心点O作OE⊥AB于点E,连接OC,∵点C是该门的最高点,∴,∴CO⊥AB,∴C,O,E三点共线,连接OA,∵OE⊥AB,∴AE==0.5m,设圆O的半径为R,则OE=2.5-R,∵OA2=AE2+OE2,∴R2=(0.5)2+(2.5-R)2,解得:R=,故答案为.【点睛】本题考查了垂径定理,勾股定理,正确的作出辅助线是解题的关键.14、【分析】根据特殊角的三角函数值计算即可.【详解】解:根据特殊角的三角函数值可知:cos45°=,故答案为.【点睛】本题主要考查了特殊角的三角函数值,比较简单,熟练掌握特殊角的三角函数值是解答的关键.15、1【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵==,∵,∴抛物线开口向下,当x=6时,h取得最大值,火箭能达到最大高度为1m.故答案为:1.【点睛】本题考查了二次函数的应用,熟练掌握配方法及二次函数的性质,是解题的关键.16、【解析】试题解析:连接∵四边形ABCD是矩形,∴CE=BC=4,∴CE=2CD,由勾股定理得:∴阴影部分的面积是S=S扇形CEB′−S△CDE故答案为17、或【分析】分二种情形分别求解:①如图1中,延长交于,当时,直线将矩形的面积分成两部分.②如图2中,延长交于交的延长线于,当时,直线将矩形的面积分成两部分.【详解】解:如图1中,设直线交于,当时,直线将矩形的面积分成两部分.,,,.如图2中,设直线长交于交的延长线于,当时,直线将矩形的面积分成两部分,易证∴,,,,.综上所述,满足条件的的值为或.故答案为:或.【点睛】本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.18、9π﹣12.【详解】解:连接OD交BC于点E,∠AOB=90°,∴扇形的面积==9π,由翻折的性质可知:OE=DE=3,在Rt△OBE中,根据特殊锐角三角函数值可知∠OBC=30°,在Rt△COB中,CO=2,∴△COB的面积=1,∴阴影部分的面积为=9π﹣12.故答案为9π﹣12.【点睛】本题考查翻折变换(折叠问题)及扇形面积的计算,掌握图形之间的面积关系是本题的解题关键.三、解答题(共78分)19、证明见解析【分析】求得判别式并分解得到平方与正数的和,得到判别式大于0即可证明.【详解】证明:.无论为何值,抛物线与轴总有两个交点.【点睛】此题考查一元二次方程的判别式,正确计算并掌握判别式的三种情况即可正确解题.20、(1)证明见解析;(2)m=-1【分析】(1)通过计算判别式的值得到△≥0,从而根据判别式的意义得到方程根的情况;(2)利用根与系数的关系得到x1+x2=m+2,x1x2=2m,则,解不等式组,进而得到整数m的值.【详解】解:(1)∵,∴方程有两个实数根;(2)设方程的两根为x1,x2,则x1+x2=m+2,x1x2=2m,根据题意得,解得:-2<m<0,因为m是整数,所以m=-1.【点睛】本题考查了一元二次方程根的判别式以及根与系数的关系,根据题意得出不等式组是解(2)的关键.21、(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.【分析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.【点睛】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.22、(1);(2)【分析】(1)先代入特殊角的三角函数值,再按照先算乘方再算乘除后算加减的运算法则计算即可.(2)先代入特殊角的三角函数值,再按照先算乘除后算加减的运算法则计算即可.【详解】解:(1)原式.(2)原式.【点睛】本题考查了有关特殊的三角函数值的混合运算,熟练掌握特殊角的三角函数值是解题的关键.23、x﹣2,-2.【分析】由题意先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【详解】解:==x﹣2,当x=﹣1时,原式=﹣1﹣2=﹣2.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.24、(1)见解析;(2);(3),P点坐标为或【分析】(1)由角平分线求出∠MOP=∠NOP=∠AOB=30°,再证出∠OMP=∠OPN,证明△MOP∽△PON,即可得出结论;(2)由∠MPN是∠AOB的“相关角”,判断出△MOP∽△PON,得出∠OMP=∠OPN,即可得出∠MPN=180°﹣α;过点M作MH⊥OB于H,由三角形的面积公式得出:S△MON=ON•MH,即可得出结论;(3)设点C(a,b),则ab=3,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;当点A在x轴的负半轴上时,BC=3CA不可能;当点A在x轴的正半轴上时;先求出,由平行线得出△ACH∽△ABO,得出比例式:,得出OB,OA,求出OA•OB,根据∠APB是∠AOB的“相关角”,得出OP,即可得出点P的坐标;②当点B在y轴的负半轴上时;同①的方法即可得出结论.【详解】(1)证明:∵∠AOB=60°,P为∠AOB的平分线上一点,∴∠AOP=∠BOP=∠AOB=30°,∵∠MOP+∠OMP+∠MPO=180°,∴∠OMP+∠MPO=150°,∵∠MPN=150°,∴∠MPO+∠OPN=150°,∴∠OMP=∠OPN,∴△MOP∽△PON,∴,∴OP2=OM•ON,∴∠MPN是∠AOB的“相关角”;(2)解:∵∠MPN是∠AOB的“相关角”,∴OM•ON=OP2,∴,∵P为∠AOB的平分线上一点,∴∠MOP=∠NOP=α,∴△MOP∽△PON,∴∠OMP=∠OPN,∴∠MPN=∠OPN+∠OPM=∠OMP+∠OPM=180°﹣α,即∠MPN=180°﹣α;过点M作MH⊥OB于H,如图2,则S△MON=ON•MH=ON•OMsinα=OP2•sinα,∵OP=3,∴S△MON=sinα;(3)设点C(a,b),则ab=4,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;Ⅰ、当点A在x轴的负半轴上,如图3所示:BC=3CA不可能,Ⅱ、当点A在x轴的正半轴上时,如图4所示:∵BC=3CA,∴,∵CHOB,∴△ACH∽△ABO,∴,∴,∴OB=4b,OA=a,∴OA•OB=a•4b=ab=,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:;②当点B在y轴的负半轴上时,如图5所示:∵BC=3CA,∴AB=2CA,∴,∵CHOB,∴△ACH∽△ABO,∴,∴∴OB=2b,OA=a,∴OA•OB=a•2b=ab=,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:;综上所述:点P的坐标为:或.【点睛】本题考查反比例函数与几何综合,掌握数形结合和分类讨论的思想是解题的关键.25、(1)见解析;(2)见解析;(3)BE=5.【分析】(1)连接OC,根据角平分线的定义、等腰三角形的性质得到∠DAC=∠OCA,得到OC∥AD,根据平行线的性质得到OC⊥PD,根据切线的判定定理证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高炉车间人员管理制度
- 视频讲解工地管理制度
- 鱼贩进货日常管理制度
- 门面货物堆放管理制度
- 公司员工办案管理制度
- 公司体育馆管理制度
- 社区团购项目商业计划书全新策划
- 林光互补光伏储能项目可行性分析报告
- 高校科技创新策略与实践路径
- 餐厨垃圾资源化利用的行业趋势与市场前景分析
- 2025陕煤研究院西安分公司公开招聘高频重点提升(共500题)附带答案详解
- 2025年沈阳铁路局集团招聘笔试参考题库含答案解析
- 2025中考数学复习专题:八类最值问题汇-总(瓜豆隐圆胡不归阿氏圆将军饮马逆等线费马点构造二次函数求最值)(原卷版)
- 网约配送员培训课件
- 外研版(2025新版)七年级下册英语Unit 2 学情调研测试卷(含答案)
- 《货币的前世今生》课件
- 河北省职业院校技能大赛(高职)体育活动设计与实施赛项参考试题库(含答案)
- 电梯维保管理体系手册
- 《110kV三相环氧树脂浇注绝缘干式电力变压器技术参数和要求》
- 2022-2023(2) 大学英语2学习通超星期末考试答案章节答案2024年
- 外研版英语(三起)五年级下册全册教案
评论
0/150
提交评论