四川省广安市广安中学2025届九上数学期末监测模拟试题含解析_第1页
四川省广安市广安中学2025届九上数学期末监测模拟试题含解析_第2页
四川省广安市广安中学2025届九上数学期末监测模拟试题含解析_第3页
四川省广安市广安中学2025届九上数学期末监测模拟试题含解析_第4页
四川省广安市广安中学2025届九上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省广安市广安中学2025届九上数学期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内 B.点P在⊙O上 C.点P在⊙O外 D.无法判断2.在下面的计算程序中,若输入的值为1,则输出结果为().A.2 B.6 C.42 D.123.对于非零实数,规定,若,则的值为A. B. C. D.4.方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根 B.只有一个实数根C.没有实数根 D.有两个不相等的实数根5.如图是抛物线y=a(x+1)2+2的一部分,该抛物线在y轴右侧部分与x轴的交点坐标是()A.(,0) B.(1,0) C.(2,0) D.(3,0)6.方程的解是()A.4 B.-4 C.-1 D.4或-17.如图,若点M是y轴正半轴上的任意一点,过点M作PQ∥x轴,分别交函数y=(y>0)和y=(y>0)的图象于点P和Q,连接OP和OQ,则下列结论正确是()A.∠POQ不可能等于90°B.C.这两个函数的图象一定关于y轴对称D.△POQ的面积是8.如图,在△ABC中,AB=AC,D、E、F分别是边AB、AC、BC的中点,若CE=2,则四边形ADFE的周长为()A.2 B.4 C.6 D.89.如图,已知正方形ABCD的边长为2,点E、F分别为AB、BC边的中点,连接AF、DE相交于点M,则∠CDM等于A. B. C. D.10.计算的结果是A.﹣3 B.3 C.﹣9 D.911.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣212.我国古代数学名著《孙子算经》中记载了一道大题,大意是:匹马恰好拉了片瓦,已知匹小马能拉片瓦,匹大马能拉片瓦,求小马、大马各有多少匹,若设小马有匹,大马有匹,依题意,可列方程组为()A. B.C. D.二、填空题(每题4分,共24分)13.如图,菱形的顶点在轴正半轴上,顶点的坐标为,以原点为位似中心、在点的异侧将菱形缩小,使得到的菱形与原菱形的相似比为,则点的对应点的坐标为________.14.在△ABC中,已知(sinA-)2+│tanB-│=1.那么∠C=_________度.15.抛物线的顶点坐标是______.16.如图,⊙O的半径为2,AB为⊙O的直径,P为AB延长线上一点,过点P作⊙O的切线,切点为C.若PC=2,则BC的长为______.17.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=_____.18.如图,在反比例函数的图象上任取一点P,过P点分别作x轴,y轴的垂线,垂足分别为M,N,那么四边形PMON的面积为_____.三、解答题(共78分)19.(8分)深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到A“全程马拉松”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目标组进行志愿服务的概率.20.(8分)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.1.(1)试求出纸箱中蓝色球的个数;(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数.21.(8分)汽车产业的发展,有效促进我国现代建设.某汽车销售公司2007年盈利3000万元,到2009年盈利4320万元,且从2007年到2009年,每年盈利的年增长率相同,该公司2008年盈利多少万元?22.(10分)如图(1),某数学活动小组经探究发现:在⊙O中,直径AB与弦CD相交于点P,此时PA·PB=PC·PD(1)如图(2),若AB与CD相交于圆外一点P,上面的结论是否成立?请说明理由.(2)如图(3),将PD绕点P逆时针旋转至与⊙O相切于点C,直接写出PA、PB、PC之间的数量关系.(3)如图(3),直接利用(2)的结论,求当PC=,PA=1时,阴影部分的面积.23.(10分)如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.24.(10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?25.(12分)如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积;(3)写出不等式kx+b>﹣的解集.26.如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,3),C(﹣4,1).以原点O为旋转中心,将△ABC顺时针旋转90°得到△A'B'C',其中点A,B,C旋转后的对应点分别为点A',B',C'.(1)画出△A'B'C',并写出点A',B',C'的坐标;(2)求经过点B',B,A三点的抛物线对应的函数解析式.

参考答案一、选择题(每题4分,共48分)1、A【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.【详解】∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙O内,故选:A.【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.2、C【分析】根据程序框图,计算,直至计算结果大于等于10即可.【详解】当时,,继续运行程序,当时,,继续运行程序,当时,,输出结果为42,故选C.【点睛】本题考查利用程序框图计算代数式的值,按照程序运算的规则进行计算是解题的关键.3、A【解析】试题分析:∵,∴.又∵,∴.解这个分式方程并检验,得.故选A.4、C【解析】试题分析:利用根的判别式进行判断.解:∵∴此方程无实数根.故选C.5、B【解析】根据图表,可得抛物线y=a(x+1)2+2与x轴的交点坐标为(−3,0);将(−3,0)代入y=a(x+1)2+2,可得a(−3+1)2+2=0,解得a=−;所以抛物线的表达式为y=−(x+1)2+2;当y=0时,可得−(x+1)2+2=0,解得x1=1,x2=−3,所以该抛物线在y轴右侧部分与x轴交点的坐标是(1,0).故选B.6、D【分析】利用因式分解法解一元二次方程即可.【详解】解:解得:故选D.【点睛】此题考查的是解一元二次方程,掌握用因式分解法解一元二次方程是解决此题的关键.7、D【分析】利用特例对A进行判断;根据反比例函数的几何意义得到S△OMQ=OM•QM=﹣k1,S△OMP=OM•PM=k2,则可对B、D进行判断;利用关于y轴对称的点的坐标特征对C进行判断.【详解】解:A、当k1=3,k2=﹣,若Q(﹣1,),P(3,),则∠POQ=90°,所以A选项错误;B、因为PQ∥x轴,则S△OMQ=OM•QM=﹣k1,S△OMP=OM•PM=k2,则=﹣,所以B选项错误;C、当k2=﹣k1时,这两个函数的图象一定关于y轴对称,所以C选项错误;D、S△POQ=S△OMQ+S△OMP=|k1|+|k2|,所以D选项正确.故选:D.【点睛】本题考查了反比例函数比例系数的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.8、D【分析】根据三角形的中点的概念求出AB、AC,根据三角形中位线定理求出DF、EF,计算得到答案.【详解】解:∵点E是AC的中点,AB=AC,∴AB=AC=4,∵D是边AB的中点,∴AD=2,∵D、F分别是边、AB、BC的中点,∴DF=AC=2,同理,EF=2,∴四边形ADFE的周长=AD+DF+FE+EA=8,故选:D.【点睛】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.9、A【分析】根据正方形的特点可知∠CDM=∠DEA,利用勾股定理求出DE,根据余弦的定义即可求解.【详解】∵CD∥AB,∴∠CDM=∠DEA,∵E是AB中点,∴AE=AB=1∴DE=∴∠CDM=∠DEA==故选A.【点睛】此题主要考查余弦的求解,解题的关键是熟知余弦的定义.10、B【分析】利用二次根式的性质进行化简即可.【详解】=|﹣3|=3.故选B.11、B【分析】根据二次根式有意义的条件可得,再解不等式即可.【详解】解:由题意得:,解得:,

故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.12、A【分析】设大马有x匹,小马有y匹,根据题意可得等量关系:①小马数+大马数=100;②小马拉瓦数+大马拉瓦数=100,根据等量关系列出方程组即可.【详解】设小马有x匹,大马有y匹,由题意得:,故选:A.【点睛】本题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.二、填空题(每题4分,共24分)13、【分析】先求得点C的坐标,再根据如果位似变换是以原点为位似中心,相似比为,那么位似图形对应点的坐标的比等于或进行解答.【详解】菱形的顶点的坐标为,;过点作,如图,,,在和中,,∴,,,∴点C的坐标为,以原点为位似中心、在点的异侧将菱形缩小,使得到的菱形与原菱形的相似比为,,则点的对应点的坐标为.故答案为:.【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为,那么位似图形对应点的坐标的比等于或.14、2【分析】直接利用非负数的性质和特殊角的三角函数值求出∠A,∠B的度数,进而根据三角形内角和定理得出答案.【详解】∵(sinA)2+|tanB|=1,∴sinA1,tanB1,∴sinA,tanB,∴∠A=45°,∠B=61°,∴∠C=181°-∠A-∠B=181°-45°-61°=2°.故答案为:2.【点睛】本题考查了特殊角的三角函数值,正确记忆相关数据是解答本题的关键.15、(1,3)【分析】根据顶点式:的顶点坐标为(h,k)即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:的顶点坐标为(h,k)是解决此题的关键.16、2【分析】连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB是等边三角形,从而得结论.【详解】连接OC,∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=90°,∵PC=2,OC=2,∴OP===4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等边三角形,∴BC=OB=2,故答案为2【点睛】本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17、【详解】∵在Rt△ABC中,BC=6,sinA=∴AB=10∴.∵D是AB的中点,∴AD=AB=1.∵∠C=∠EDA=90°,∠A=∠A∴△ADE∽△ACB,∴即解得:DE=.18、1【分析】设出点P的坐标,四边形PMON的面积等于点P的横纵坐标的积的绝对值,把相关数值代入即可.【详解】设点P的坐标为(x,y),∵点P的反比例函数的图象上,∴xy=﹣1,作轴于,作轴于,∴四边形PMON为矩形,∴四边形PMON的面积为|xy|=1,故答案为1.【点睛】考查反比例函数的比例系数的意义;用到的知识点为:在反比例函数图象上的点的横纵坐标的积等于反比例函数的比例系数.注意面积应为正值.三、解答题(共78分)19、(1)(2)【分析】(1)直接利用概率公式可得;(2)记这三个项目分别为A、B、C,画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】(1)小智被分配到A“全程马拉松”项目组的概率为,故答案为:.(2)画树状图为:共有9种等可能的结果数,其中小智和小慧被分配到同一个项目组的结果数为3,所以小智和小慧被分到同一个项目组进行志愿服务的概率为.【点睛】本题主要考察概率,熟练掌握概率公式是解题关键.20、(1)50;(2)2【解析】(1)蓝色球的个数等于总个数乘以摸到蓝色球的概率即可;(2)因为摸到红球的频率在0.5附近波动,所以摸出红球的概率为0.5,再设出红球的个数,根据概率公式列方程解答即可.【详解】(1)由已知得纸箱中蓝色球的个数为:100×(1﹣0.2﹣0.1)=50(个)(2)设小明放入红球x个.根据题意得:解得:x=2(个).经检验:x=2是所列方程的根.答:小明放入的红球的个数为2.【点睛】本题考查了利用频率估计概率,大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.关键是根据黑球的频率得到相应的等量关系.21、2008年盈利3600万元.【分析】设该公司从2007年到2009年,每年盈利的年增长率是x,根据题意列出方程进行求解即可求出年增长率;然后根据2007年的盈利,即可算出2008年的盈利.【详解】解:设每年盈利的年增长率为x,由题意得:3000(1+x)2=4320,解得:,(不合题意,舍去),∴年增长率20%,∴3000×(1+20%)=3600,答:该公司2008年盈利3600万元.【点睛】本题考查了一元二次方程的应用,解题的关键是求出从2007年到2009年,每年盈利的年增长率.22、(1)成立,理由见解析;(2);(3)【分析】(1)连接AD、BC,得到∠D=∠B,可证△PAD∽△PCB,即可求解;(2)根据(1)中的结论即可求解;(3)连接OC,根据,PC=,PA=1求出PB=3,AO=CO=1,PO=2利用,得到AOC为等边三角形,再分别求出,即可求解.【详解】解:(1)成立理由如下:如图,连接AD、BC则∠D=∠B∵∠P=∠P∴△PAD∽△PCB∴=∴PA·PB=PC·PD(2)当PD与⊙O相切于点C时,PC=PD,由(1)得PA·PB=PC·PD∴(3)如图,连接OC,PC=,PA=1PB=3,AO=CO=1,PO=2PC与⊙O相切于点CPCO为直角三角形,AOC为等边三角形====【点睛】此题主要考查圆内综合问题,解题的关键是熟知相似三角形的判定与性质、切线的性质及扇形面积的求解公式.23、(1)证明见解析;(2)PD=.【分析】(1)连接OA,由∠B=60°,利用圆周角定理,即可求得∠AOC的度数,又由OA=OC,即可求得∠OAC与∠OCA的度数,利用三角形外角的性质,求得∠AOP的度数,又由AP=AC,利用等边对等角,求得∠P,则可求得∠PAO=90°,则可证得AP是⊙O的切线.(2)由CD是⊙O的直径,即可得∠DAC=90°,然后利用三角函数与等腰三角形的判定定理,即可求得PD的长.【详解】(1)证明:连接OA.∵∠B=60°,∴∠AOC=2∠B=120°.又∵OA=OC,∴∠ACP=∠CAO=30°.∴∠AOP=60°.∵AP=AC,∴∠P=∠ACP=30°.∴∠OAP=90°.∴OA⊥AP.∴AP是⊙O的切线.(2)解:连接AD.∵CD是⊙O的直径,∴∠CAD=90°.∴AD=AC•tan30°=3×.∵∠ADC=∠B=60°,∴∠PAD=∠ADC﹣∠P=60°﹣30°.∴∠P=∠PAD.∴PD=AD=.24、(1)y=﹣5x2+800x﹣27500(50≤x≤100);(2)当x=80时,y最大值=4500;(3)70≤x≤1.【分析】(1)根据题目已知条件,可以判定销量与售价之间的关系式为一次函数,并可以进一步写出二者之间的关系式;然后根据单位利润等于单位售价减单位成本,以及销售利润等于单位利润乘销量,即可求出每天的销售利润与销售单价之间的关系式.(2)根据开口向下的抛物线在对称轴处取得最大值,即可计算出每天的销售利润及相应的销售单价.(3)根据开口向下的抛物线的图象的性质,满足要求的x的取值范围应该在﹣5(x﹣80)2+4500=4000的两根之间,即可确定满足题意的取值范围.【详解】解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500,∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500,∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论