版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届四川省宜宾县数学九上期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知二次函数,点A,B是其图像上的两点,()A.若,则 B.若,则C.若,则 D.若,则2.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数(t的单位:s,h的单位:m)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是()A.1.71s B.1.71s C.1.63s D.1.36s3.下列方程中,有两个不相等的实数根的是()A.x2﹣x﹣1=0 B.x2+x+1=0 C.x2+1=0 D.x2+2x+1=04.如图,已知点E(﹣4,2),点F(﹣1,﹣1),以O为位似中心,把△EFO放大为原来的2倍,则E点的对应点坐标为()A.(2,﹣1)或(﹣2,1) B.(8,﹣4)或(﹣8,4)C.(2,﹣1) D.(8,﹣4)5.已知⊙O的半径为4,圆心O到弦AB的距离为2,则弦AB所对的圆周角的度数是()A.30° B.60°C.30°或150° D.60°或120°6.一件产品原来每件的成本是1000元,在市场售价不变的情况下,由于连续两次降低成本,现在利润每件增加了190元,则平均每次降低成本的()A. B. C. D.7.下列各式中属于最简二次根式的是()A. B. C. D.8.如图,已知△ABC中,∠C=90°,AC=BC,把△ABC绕点A逆时针旋转60°得到△AB'C',连接C'B,则∠ABC'的度数是()A.45° B.30° C.20° D.15°9.圆锥的底面半径为2,母线长为6,它的侧面积为()A. B. C. D.10.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x,则可以列方程为()A. B.C. D.二、填空题(每小题3分,共24分)11.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了______度.12.如图,是正三角形,D、E分别是BC、AC上的点,当=_______时,~.13.如图,AD,BC相交于点O,AB∥CD.若AB=2,CD=3,则△ABO与△DCO的面积之比为_____.14.玫瑰花的花粉直径约为0.000084米,数据0.000084用科学记数法表示为__________.15.在一个不透明的盒子里装有5个黑色棋子和若干白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到白色棋子的概率是,则白色棋子的个数为_____.16.若a是方程x2-x-1=0的一个根,则2a2-2a+5=________.17.在2015年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是________.18.如图,P1是反比例函数(k>0)在第一象限图象上的一点,点A1的坐标为(2,0).若△P1OA1与△P2A1A2均为等边三角形,则A2点的坐标为_____.三、解答题(共66分)19.(10分)近日,国产航母山东舰成为了新晋网红,作为我国本世纪建造的第一艘真正意义上的国产航母,承载了我们太多期盼,促使我国在伟大复兴路上加速前行如图,山东舰在一次测试中,巡航到海岛A北偏东60°方向P处,发现在海岛A正东方向有一可疑船只B正沿BA方向行驶。山东舰经测量得出:可疑船只在P处南偏东45°方向,距P处海里。山东舰立即从P沿南偏西30°方向驶出,刚好在C处成功拦截可疑船只。求被拦截时,可疑船只距海岛A还有多少海里?(,结果精确到0.1海里)20.(6分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.(1)求反比例函数的表达式(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标(3)求△PAB的面积.21.(6分)如图,在平面直角坐标系中,△ABC顶点的坐标分别为A(﹣3,3),B(﹣5,2),C(﹣1,1).(1)以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2,且A₁B₁C位于点C的异侧,并表示出点A1的坐标.(2)作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.(3)在(2)的条件下求出点B经过的路径长(结果保留π).22.(8分)如图,某数学兴趣小组的同学利用标杆测量旗杆的高度:将一根米高的标杆竖直放在某一位置,有一名同学站在处与标杆底端、旗杆底端成一条直线,此时他看到标杆顶端与旗杆顶端重合,另外一名同学测得站立的同学离标杆米,离旗杆米.如果站立的同学的眼睛距地面米,过点作于点,交于点,求旗杆的高度.23.(8分)如图,一位测量人员,要测量池塘的宽度的长,他过A、B两点画两条相交于点的射线,在射线上取两点D、E,使,若测得DE=37.2米,他能求出A、B之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.24.(8分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路线为弧BD求图中阴影部分的面积.25.(10分)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系。的顶点都在格点上,请解答下列问题:(1)作出关于原点对称的;(2)写出点、、的坐标。26.(10分)如图①,在平行四边形ABCD中,对角线AC、BD交于点O,AB=AC,AB⊥AC,过点A作AE⊥BD于点E.(1)若BC=6,求AE的长度;(2)如图②,点F是BD上一点,连接AF,过点A作AG⊥AF,且AG=AF,连接GC交AE于点H,证明:GH=CH.
参考答案一、选择题(每小题3分,共30分)1、B【分析】利用作差法求出,再结合选项中的条件,根据二次函数的性质求解.【详解】解:由得,∴,,,∵,∴,选项A,当时,,,A错误.选项B,当时,,,B正确.选项C,D无法确定的正负,所以不能确定当时,函数值的y1与y2的大小关系,故C,D错误.∴选B.【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是利用作差法,结合二次函数的性质解答.2、D【分析】找重心最高点,就是要求这个二次函数的顶点,应该把一般式化成顶点式后,直接解答.【详解】解:h=3.5t-4.9t2=-4.9(t-)2+,∵-4.9<1∴当t=≈1.36s时,h最大.故选D.【点睛】此题主要考查了二次函数的应用,根据题意得出顶点式在解题中的作用是解题关键.3、A【分析】逐项计算方程的判别式,根据根的判别式进行判断即可.【详解】解:在x2﹣x﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=1+4=5>0,故该方程有两个不相等的实数根,故A符合题意;在x2+x+1=0中,△=12﹣4×1×1=1﹣4=﹣3<0,故该方程无实数根,故B不符合题意;在x2+1=0中,△=0﹣4×1×1=0﹣4=﹣4<0,故该方程无实数根,故C不符合题意;在x2+2x+1=0中,△=22﹣4×1×1=0,故该方程有两个相等的实数根,故D不符合题意;故选:A.【点睛】本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.4、B【分析】E(﹣4,1)以O为位似中心,按比例尺1:1,把△EFO放大,则点E的对应点E′的坐标是E(﹣4,1)的坐标同时乘以1或﹣1.【详解】解:根据题意可知,点E的对应点E′的坐标是E(﹣4,1)的坐标同时乘以1或﹣1.所以点E′的坐标为(8,﹣4)或(﹣8,4).故选:B.【点睛】本题主要考查根据位似比求对应点的坐标,分情况讨论是解题的关键.5、D【分析】根据题意作出图形,利用三角形内角和以及根据圆周角定理和圆内接四边形的性质进行分析求解.【详解】解:如图,∵OH⊥AB,OA=OB=4,∴∠AHO=90°,在Rt△OAH中,sin∠OAH=∴∠OAH=30°,∴∠AOB=180°-30°-30°=120°,∴∠ACB=∠AOB=60°,∠ADB=180°-∠ACB=120°(圆内接四边形的性质),即弦AB所对的圆周角的度数是60°或120°.故选:D.【点睛】本题考查圆周角定理,圆周角定理即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6、A【分析】设平均每次降低成本的x,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设平均每次降低成本的x,
根据题意得:1000-1000(1-x)2=190,
解得:x1=0.1=10%,x2=1.9(舍去),
则平均每次降低成本的10%,
故选A.【点睛】此题考查了一元二次方程的应用,弄清题意是解本题的关键.7、A【分析】根据最简二次根式的定义解答即可.【详解】A.是最简二次根式;B.∵=,∴不是最简二次根式;C.∵=,∴不是最简二次根式;D.∵,∴不是最简二次根式;故选A.【点睛】本题考查了最简二次根式的识别,如果二次根式的被开方式中都不含分母,并且也都不含有能开的尽方的因式,像这样的二次根式叫做最简二次根式.8、B【分析】连接BB′,延长BC′交AB′于点M;证明△ABC′≌△B′BC′,得到∠MBB′=∠MBA=30°.【详解】如图,连接BB′,延长BC′交AB′于点M;由题意得:∠BAB′=60°,BA=B′A,∴△ABB′为等边三角形,∴∠ABB′=60°,AB=B′B;在△ABC′与△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠MBB′=∠MBA=30°,即∠ABC'=30°;故选:B.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形是解题的关键.9、B【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【详解】根据圆锥的侧面积公式:rl=×2×6=12,故选:B.【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.10、D【分析】根据题意分别用含x式子表示第二天,第三天的票房数,将三天的票房相加得到票房总收入,即可得出答案.【详解】解:设增长率为x,由题意可得出,第二天的票房为3(1+x),第三天的票房为3(1+x)2,根据题意可列方程为.故选:D.【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式.二、填空题(每小题3分,共24分)11、90【解析】分针走一圈(360°)要1小时,则每分钟走360°÷60=6°,则15分钟旋转15×6°=90°.故答案为90.12、60°【分析】由△ABC是正三角形可得∠B=60°,又由△ABD∽△DCE,根据相似三角形的对应角相等,即可得∠EDC=∠BAD,然后利用三角形外角的性质,即可求得∠ADE的度数【详解】∵△ABC是正三角形,∴∠B=60°,∵△ABD∽△DCE,∴∠EDC=∠BAD,∵∠ADC是△ABD的外角,∴∠ADE+∠EDC=∠B+∠BAD,∴∠ADE=∠B=60°,【点睛】此题考查了相似三角形的判定与性质、等边三角形的性质以及三角形外角的性质.此题难度适中.13、【分析】由AB∥CD可得出∠A=∠D,∠B=∠C,进而可得出△ABO∽△DCO,再利用相似三角形的性质可求出△ABO与△DCO的面积之比.【详解】∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△ABO∽△DCO,∴.故答案为:.【点睛】此题考查相似三角形的判定及性质,相似三角形的面积的比等于相似比的平方.14、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】数据0.000084用科学记数法表示为故答案为:【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15、1.【分析】设白色棋子的个数为x个,根据概率公式列出算式,求出x的值即可得出答案.【详解】解:设白色棋子的个数为x个,根据题意得:=,解得:x=1,答:白色棋子的个数为1个;故答案为:1.【点睛】此题主要考查概率的应用,解题的关键是根据题意列出分式方程进行求解.16、1【分析】根据一元二次方程的解的定义,将x=a代入方程x2-x-1=0,列出关于a的一元二次方程,通过解方程求得a2-a的值后,将其整体代入所求的代数式并求值即可.【详解】根据题意,得a2-a-1=0,即a2-a=1;∴2a2-2a+5=2(a2-a)+5=2×1+5=1,即2a2-2a+5=1.故答案是:1.【点睛】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.17、1【解析】试题分析:根据折线统计图可知6名学生的体育成绩为;24,24,1,1,1,30,所以这组数据的中位数是1.考点:折线统计图、中位数.18、(2,0)【分析】由于△P1OA1为等边三角形,作P1C⊥OA1,垂足为C,由等边三角形的性质及勾股定理可求出点P1的坐标,根据点P1是反比例函数y=(k>0)图象上的一点,利用待定系数法求出此反比例函数的解析式;作P2D⊥A1A2,垂足为D.设A1D=a,由于△P2A1A2为等边三角形,由等边三角形的性质及勾股定理,可用含a的代数式分别表示点P2的横、纵坐标,再代入反比例函数的解析式中,求出a的值,进而得出A2点的坐标.【详解】作P1C⊥OA1,垂足为C,∵△P1OA1为边长是2的等边三角形,∴OC=1,P1C=2×=,∴P1(1,).代入y=,得k=,所以反比例函数的解析式为y=.作P2D⊥A1A2,垂足为D.设A1D=a,则OD=2+a,P2D=a,∴P2(2+a,a).∵P2(2+a,a)在反比例函数的图象上,∴代入y=,得(2+a)•a=,化简得a2+2a﹣1=0解得:a=﹣1±.∵a>0,∴a=﹣1+.∴A1A2=﹣2+2,∴OA2=OA1+A1A2=2,所以点A2的坐标为(2,0).故答案为:(2,0).【点睛】此题综合考查了反比例函数的性质,利用待定系数法求函数的解析式,正三角形的性质等多个知识点.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.三、解答题(共66分)19、被拦截时,可疑船只距海岛A还有57.7海里.【分析】过点P作于点D,在中,利用等腰直角三角形性质求出PD的长,在中,求出PC的长,再求的.可得.【详解】解:过点P作于点D由题意可知,在中,∴在中,∴又∴∴∴(海里)即被拦截时,可疑船只距海岛A还有57.7海里.【点睛】此题考查了解直角三角形的应用,熟练掌握直角三角形中三角函数的运用是解题的关键.20、(1)反比例函数的表达式y=,(2)点P坐标(,0),(3)S△PAB=1.1.【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,
解得a=3,
∴A(1,3),
点A(1,3)代入反比例函数y=,
得k=3,
∴反比例函数的表达式y=,
(2)把B(3,b)代入y=得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,
∴D(3,﹣1),设直线AD的解析式为y=mx+n,
把A,D两点代入得,,
解得m=﹣2,n=1,
∴直线AD的解析式为y=﹣2x+1,令y=0,得x=,
∴点P坐标(,0),(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.21、(1)见解析,A1(3,﹣3);(2)见解析;(3)【分析】(1)延长BC到B1,使B1C=2BC,延长AC到A1,使A1C=2AC,再顺次连接即可得△A1B1C,再写出A1坐标即可;(2)分别作出A,B绕C点顺时针旋转90°后的对应点A2,B2,再顺次连接即可得△A2B2C.(3)点B的运动路径为以C为圆心,圆心角为90°的弧长,利用弧长公式即可求解.【详解】解:(1)如图,△A1B1C为所作,点A1的坐标为(3,﹣3);(2)如图,△A2B2C为所作;(3)CB=,所以点B经过的路径长=π.【点睛】本题考查网格作图与弧长计算,熟练掌握位似与旋转作图,以及弧长公式是解题的关键.22、旗杆的高度为15.6米.【分析】过点E作EH⊥AB于点H,交CD于点G得出,利用形似三角形的对应边成比例求出AH的长,进而求出AB的长.【详解】过点作于点,交于点.由题意可得,四边形都是矩形,..∴.由题意可得:,(米).∴,(米),(米).答:旗杆的高度为米.【点睛】此题主要考查了相似三角形的应用,根据相似三角形判定得出△ECG∽△EAH是解题关键.23、24.8米.【分析】首先判定△DOE∽△BOA,根据相似三角形的性质可得,再代入DE=37.2米计算即可.【详解】∵,∠DOE=∠BOA,∴△DOE∽△BOA,∴,∴,∴AB=24.8(米).答:A、B之间的距离为24.8米.【点睛】本题考查了相似三角形的应用,关键是掌握相似三角形的对应边的比相等.24、π.【分析】根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB的面积,根据扇形面积公式计算即可.【详解】∵将△ABC绕点A逆时针旋转30°后得到△ADE,∴根据旋转可知:∠DAB=30°,△AED≌△ACB,∴S△AE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版淋浴房定制设计与安装全流程服务合同3篇
- 河南省周口市郸城县2024-2025学年九年级上学期期末考试英语试题(含答案含听力原文无音频)
- 2025版土地承包经营权入股合作合同示范文本6篇
- 宗教音乐与音像制品的和谐共生考核试卷
- 二零二五年度物流装备租赁合同模板
- “超级全能生”全国卷26省联考高考语文试题(甲卷)(含答案)
- 二零二五年度木地板品牌授权区域代理合同4篇
- 2025年企业信息保密协议格式
- 2025年学校体育活动协议
- 2025年学校食堂租赁协议
- 2024年社区警务规范考试题库
- 2024年食用牛脂项目可行性研究报告
- 消防安全隐患等级
- 温室气体(二氧化碳和甲烷)走航监测技术规范
- 部编版一年级语文下册第一单元大单元教学设计
- 《保单检视专题》课件
- 北京地铁13号线
- 2023山东春季高考数学真题(含答案)
- 职业卫生法律法规和标准培训课件
- 高二下学期英语阅读提升练习(二)
- 民事诉讼证据清单模板
评论
0/150
提交评论