版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省武汉市华中师大一附中九上数学期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.一个不透明的盒子有n个除颜色外其它完全相同的小球,其中有12个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.30 C.40 D.502.将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为()A.B.C.D.3.海南渔民从事海洋捕捞已有上千年历史,南海是海南渔民的“祖宗海”,目前海南共有约25万人从事渔业生产.这个数据用科学记数法表示为()A.2.5×106人 B.25×104人 C.2.5×104人 D.2.5×105人4.一元二次方程的解是()A. B. C. D.5.将函数的图象向右平移个单位,再向下平移个单位,可得到的抛物线是()A. B.C. D.6.如图,将的三边扩大一倍得到(顶点均在格点上),如果它们是以点为位似中心的位似图形,则点的坐标是()A. B. C. D.7.如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为()A. B. C. D.8.如图,已知点A(m,m+3),点B(n,n﹣3)是反比例函数y=(k>0)在第一象限的图象上的两点,连接AB.将直线AB向下平移3个单位得到直线l,在直线l上任取一点C,则△ABC的面积为()A. B.6 C. D.99.如图,AB是⊙O的直径,CD是⊙O的弦,若∠BAD=48°,则∠DCA的大小为()A. B. C. D.10.计算的结果是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知反比例函数的图象如图所示,则_____
,在图象的每一支上,随的增大而_____.12.如图,在平行四边形中,点在边上,,连接交于点,则的面积与四边形的面积之比为___13.已知△ABC与△DEF相似,相似比为2:3,如果△ABC的面积为4,则△DEF的面积为_____.14.若二次函数y=mx2+2x+1的图象与x轴有公共点,则m的取值范围是_____.15.如图,为矩形对角线,的交点,AB=6,M,N是直线BC上的动点,且,则的最小值是_.16.若关于x的一元二次方程2x2-x+m=0有两个相等的实数根,则m的值为__________.17.如图,中,,且,,则___________18.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.三、解答题(共66分)19.(10分)如图,AB为⊙O的直径,AC是弦,D为线段AB延长线上一点,过C,D作射线DP,若∠D=2∠CAD=45º.(1)证明:DP是⊙O的切线.(2)若CD=3,求BD的长.20.(6分)如图,一次函数y=kx+b(b=0)的图象与反比例函数y=(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(﹣3,4),点B的坐标为(6,n)(1)求反比例函数和一次函数的解析式;(2)连接OB,求△AOB的面积;(3)若kx+b<,直接写出x的取值范围.21.(6分)为进一步发展基础教育,自年以来,某县加大了教育经费的投入,年该县投入教育经费万元.年投入教育经费万元.假设该县这两年投入教育经费的年平均增长率相同.求这两年该县投入教育经费的年平均增长率.22.(8分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸袋(为正整数),则购买小红旗多少袋能恰好配套?请用含的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付元,求关于的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?23.(8分)如图,函数y1=﹣x+4的图象与函数(x>0)的图象交于A(m,1),B(1,n)两点.(1)求k,m,n的值;(2)利用图象写出当x≥1时,y1和y2的大小关系.24.(8分)2016年3月,我市某中学举行了“爱我中国•朗诵比赛”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)参加朗诵比赛的学生共有人,并把条形统计图补充完整;(2)扇形统计图中,m=,n=;C等级对应扇形有圆心角为度;(3)学校欲从获A等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树形图法,求获A等级的小明参加市朗诵比赛的概率.25.(10分)如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使,连接DE,分别交BC,AC交于点F,G.(1)求证:;(2)若,,求FG的长.26.(10分)如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连结AB.(1)求证:AB2=AE·AD;(2)若AE=2,ED=4,求图中阴影的面积.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值即可.【详解】根据题意得:,解得n=40,所以估计盒子中小球的个数为40个.故选C.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,概率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.2、A【分析】先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.
故选A.3、D【分析】对于一个绝对值较大的数,用科学记数法写成的形式,其中,n是比原整数位数少1的数.【详解】25万人=2.5×105人.故选D.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、D【分析】这个式子先移项,变成x2=4,从而把问题转化为求4的平方根.【详解】移项得,x2=4开方得,x=±2,故选D.【点睛】(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.5、A【分析】根据图象平移的过程易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【详解】解:原抛物线的顶点为,向右平移1个单位,再向下平移3个单位,那么新抛物线的顶点为;可设新抛物线的解析式为,代入得:,故选:A.【点睛】主要考查了二次函数图象与几何变换,抛物线平移不改变二次项的系数的值,解决本题的关键是得到新抛物线的顶点坐标.6、D【分析】根据位似中心的定义作图即可求解.【详解】如图,P点即为位似中心,则P故选D.【点睛】此题主要考查位似中心,解题的关键是熟知位似的特点.7、A【解析】分析:连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式求出即可.详解:连接AC.∵从一块直径为2m的圆形铁皮上剪出一个同心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2m,AB=BC.∵AB2+BC2=22,∴AB=BC=m,∴阴影部分的面积是=(m2).故选A.点睛:本题考查了圆周角定理和扇形的面积计算,能熟记扇形的面积公式是解答此题的关键.8、A【分析】由点A(m,m+3),点B(n,n﹣3)在反比例函数y=(k>0)第一象限的图象上,可得到m、n之间的关系,过点A、B分别作x轴、y轴的平行线,构造直角三角形,可求出直角三角形的直角边的长,由平移可得直角三角形的直角顶点在直线l上,进而将问题转化为求△ADB的面积.【详解】解:∵点A(m,m+3),点B(n,n﹣3)在反比例函数y=(k>0)第一象限的图象上,∴k=m(m+3)=n(n﹣3),即:(m+n)(m﹣n+3)=0,∵m+n>0,∴m﹣n+3=0,即:m﹣n=﹣3,过点A、B分别作x轴、y轴的平行线相交于点D,∴BD=xB﹣xA=n﹣m=3,AD=yA﹣yB=m+3﹣(n﹣3)=m﹣n+6=3,又∵直线l是由直线AB向下平移3个单位得到的,∴平移后点A与点D重合,因此,点D在直线l上,∴S△ACB=S△ADB=AD•BD=,故选:A.【点睛】本题主要考察反比例函数与一次函数的交点问题,解题关键是熟练掌握计算法则.9、B【详解】解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=90°−∠BAD=42°,∴∠DCA=∠ABD=42°故选B10、D【分析】根据同底数幂相乘的运算公式进行计算即可.【详解】解:=故选:D.【点睛】本题考查同底数幂相乘的运算,熟练掌握运算公式是解题的关键.二、填空题(每小题3分,共24分)11、,增大.【解析】根据反比例函数的图象所在的象限可以确定k的符号;根据图象可以直接回答在图象的每一支上,y随x的增大而增大.【详解】根据图象知,该函数图象经过第二、四象限,故k<0;
由图象可知,反比例函数y=在图象的每一支上,y随x的增大而增大.
故答案是:<;增大.【点睛】本题考查了反比例函数的图象.解题时,采用了“数形结合”的数学思想.12、【分析】由DE:EC=3:1,可得DF:FB=3:4,根据在高相等的情况下三角形面积比等于底边的比,可得S△EFD:S△BEF=3:4,S△BDE:S△BEC=3:1,可求△DEF的面积与四边形BCEF的面积的比值.【详解】解:连接BE
∵DE:EC=3:1
∴设DE=3k,EC=k,则CD=4k
∵ABCD是平行四边形
∴AB∥CD,AB=CD=4k,∴,∴S△EFD:S△BEF=3:4
∵DE:EC=3:1
∴S△BDE:S△BEC=3:1
设S△BDE=3a,S△BEC=a
则S△EFD=,,S△BEF=,∴SBCEF=S△BEC+S△BEF=,∴则△DEF的面积与四边形BCEF的面积之比9:19
故答案为:.【点睛】本题考查了平行线分线段成比例,平行四边形的性质,关键是运用在高相等的情况下三角形面积比等于底边的比求三角形的面积比值.13、1【解析】由△ABC与△DEF的相似,它们的相似比是2:3,根据相似三角形的面积比等于相似比的平方,即可得它们的面积比是4:1,又由△ABC的面积为4,即可求得△DEF的面积.【详解】∵△ABC与△DEF的相似,它们的相似比是2:3,
∴它们的面积比是4:1,
∵△ABC的面积为4,
∴△DEF的面积为:4×=1.
故答案为:1.【点睛】本题考查的知识点是相似三角形的性质,解题关键是掌握相似三角形的面积比等于相似比的平方定理.14、m≤1且m≠1.【分析】由抛物线与x轴有公共点可知△≥1,再由二次项系数不等于1,建立不等式即可求出m的取值范围.【详解】解:y=mx2+2x+1是二次函数,∴m≠1,由题意可知:△≥1,∴4﹣4m≥1,∴m≤1∴m≤1且m≠1故答案为m≤1且m≠1.【点睛】本题考查二次函数图像与x轴的交点问题,熟练掌握交点个数与△的关系是解题的关键.15、2【分析】根据题意找到M与N的位置,再根据勾股定理求出OM,ON的长即可解题.【详解】解:过点O作OE⊥BC于E,由题可知当E为MN的中点时,此时OM+ON有最小值,∵AB=6,∴PE=3,(中位线性质)∵MN=2,即ME=NE=1,∴OM=ON=,(勾股定理)∴OM+ON的最小值=2【点睛】本题考查了图形的运动,中位线和勾股定理,找到M与N的位置是解题关键.16、【解析】根据“关于x的一元二次方程2x2-x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【详解】根据题意得:△=1-4×2m=0,整理得:1-8m=0,解得:m=,故答案为:.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.17、1【分析】由及,得,再证△ADE∽△ABC,推出,代入值,即可求出BC.【详解】解:∵,,
∴∵DE∥BC,
∴△ADE∽△ABC,
∴,
∵,
∴,则BC=1,
故答案为:1.【点睛】本题考查了相似三角形的性质和判定的应用,注意:相似三角形的对应边的比相等.18、2:1【解析】先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1.故答案为2:1.点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)连接OC,根据等腰三角形的性质,三角形的内角和与外角的性质,证得∠OCD=90°,即可证得DP是⊙O的切线;(2)根据等腰直角三角形的性质得OB=OC=CD=3,而∠OCD=90º,最后利用勾股定理进行计算即可.【详解】(1)证明:连接OC,
∵OA=OC,
∴∠CAD=∠ACO,
∴∠COD=2∠CAD=45°,
∵∠D=2∠CAD=45º,∴∠OCD=180°-45°-45°=90°,
∴OC⊥CD,∴DP是⊙O的切线;(2)由(1)可知∠CDO=∠COD=45º∴OB=OC=CD=3∵∠OCD=90º∴,∴BD=OD-OB=【点睛】本题考查了切线的性质,等腰三角形的判定与性质,勾股定理,熟练掌握切线的性质是解题的关键.20、(1),y=﹣x+2;(2)9;(3)x>6或﹣3<x<1【分析】(1)根据A的坐标求出反比例函数的解析式,求出B点的坐标,再把A、B的坐标代入y=kx+b,求出一次函数的解析式即可;(2)先求出点C的坐标,再根据三角形的面积公式求出即可;(3)根据A、B的坐标和图象得出即可.【详解】解:(1)把A点的坐标(﹣3,4)代入y=得:m=﹣12,即反比例函数的解析式是y=,把B点的坐标(6,n)代入y=﹣得:n=﹣2,即B点的坐标是(6,﹣2),把A、B的坐标代入y=kx+b得:,解得:k=﹣,b=2,所以一次函数的解析式是y=﹣x+2;(2)设一次函数y=﹣x+2与x轴的交点是C,y=﹣x+2,当y=1时,x=3,即OC=3,∵A(﹣3,4),B(6,﹣2),∴△AOB的面积S=S△AOC+S△BOC==9;(3)当kx+b<时x的取值范围是x>6或﹣3<x<1.【点睛】本题考查了一次函数和反比例函数的综合问题,掌握一次函数和反比例函数的图象和性质、三角形面积公式是解题的关键.21、该县投入教育经费的年平均增长率为20%【分析】设该县投入教育经费的年平均增长率为x,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;【详解】解:设该县投入教育经费的年平均增长率为x,根据题意得:
6000(1+x)2=8640
解得:x1=0.2=20%,x2=-2.2(不合题意,舍去),经检验,x=20%符合题意,答:该县投入教育经费的年平均增长率为20%;【点睛】此题考查了一元二次方程的应用,掌握增长率问题是本题的关键,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.22、(1)每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)购买小红旗袋恰好配套;(3)需要购买国旗图案贴纸和小红旗各48,60袋,总费用元.【解析】(1)设每袋国旗图案贴纸为元,则有,解得,检验后即可求解;(2)设购买袋小红旗恰好与袋贴纸配套,则有,解得;(3)如果没有折扣,,国旗贴纸需要:张,小红旗需要:面,则袋,袋,总费用元.【详解】(1)设每袋国旗图案贴纸为元,则有,解得,经检验是方程的解,∴每袋小红旗为元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买袋小红旗恰好与袋贴纸配套,则有,解得,答:购买小红旗袋恰好配套;(3)如果没有折扣,则,依题意得,解得,当时,则,即,国旗贴纸需要:张,小红旗需要:面,则袋,袋,总费用元.【点睛】本题考查分式方程,一次函数的应用,能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.23、(1)m=3,k=3,n=3;(1)当1<x<3时,y1>y1;当x>3时,y1<y1;当x=1或x=3时,y1=y1.【分析】(1)把A与B坐标代入一次函数解析式求出m与n的值,将A坐标代入反比例解析式求出k的值;(1)利用图像,可知分x=1或x=3,1<x<3与x>3三种情况判断出y1和y1的大小关系即可.【详解】(1)把A(m,1)代入y=-x+4得:1=﹣m+4,即m=3,∴A(3,1),把A(3,1)代入y=得:k=3,把B(1,n)代入一次函数解析式得:n=﹣1+4=3;(1)∵A(3,1),B(1,3),∴根据图像得当1<x<3时,y1>y1;当x>3时,y1<y1;当x=1或x=3时,y1=y1.24、(1)40,补图见解析;(2)10,40,144;(3)【解析】试题分析:(1)根据D等级的有12人,占总数的30%,即可求得总人数,利用总人数减去其它等级的人数求得B等级的人数,从而作出直方图;(2)根据百分比的定义求得m、n的值,利用360°乘以C等级所占的百分比即可求得对应的圆心角;(3)利用列举法即可求解.试题解析:(1)参加演讲比赛的学生共有:12÷30%=40(人),则B等级的人数是:4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年二零二四年度旅游项目授信担保合同范例3篇
- 2024年智慧城市路灯维修养护工程合同范本3篇
- 2024三方停车场车位租赁及新能源充电配套设施与智慧停车管理协议范本3篇
- 2024年度空调系统运行效率提升合同3篇
- 2024版国际贸易融资担保借款合同汇编2篇
- 2024年汽车交易协议示范文本版B版
- 2024年度水路货物运输合同货物配送与配送时效细则3篇
- 2024版个人汽车抵押债权转让协议3篇
- 2024年新型农业贷款合同范本(绿色能源)3篇
- 2024版个人创业贷款延期还款合同3篇
- 经典广告赏析智慧树知到期末考试答案2024年
- 护理操作吸痰
- 2024输血相关知识培训
- 2022版义务教育(体育与健康)课程标准(附课标解读)
- 《坚硬顶板灾害防治 》培训课件2024
- GB/T 43805-2024邮件快件循环包装使用指南
- 无人机驾驶航空器飞行管理暂行条例(草案)知识考试题库(85题)
- 喀什简介介绍
- 生物化学研究前沿
- 2023年介入手术工作总结报告
- 《小儿癫痫》课件
评论
0/150
提交评论