




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宁夏石嘴山市第十五中学2025届数学九上期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些小球除颜色外都相同,其中有红球3个,黄球2个,蓝球若干,已知随机摸出一个球是红球的概率是,则随机摸出一个球是蓝球的概率是()A. B. C. D.2.如图,四边形ABCD为⊙O的内接四边形,E是BC延长线上的一点,已知∠BOD=130°,则∠DCE的度数为()A.45° B.50° C.65° D.75°3.一元二次方程的解是()A. B. C., D.,4.一个不透明的袋子中装有21个红球和若干个白球,这些球除了颜色外都相同,若小英每次从袋子中随机摸出一个球,记下颜色后再放回,经过多次重复试验,小英发现摸到红球的频率逐渐稳定于1.4,则小英估计袋子中白球的个数约为()A.51 B.31 C.12 D.85.已知,点是线段上的黄金分割点,且,则的长为()A. B. C. D.6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,观察两枚骰子向上一面的点数情况.则下列事件为随机事件的是()A.点数之和等于1 B.点数之和等于9C.点数之和大于1 D.点数之和大于127.如图,在中,点D,E分别为AB,AC边上的点,且,CD、BE相较于点O,连接AO并延长交DE于点G,交BC边于点F,则下列结论中一定正确的是A. B. C. D.8.在一个不透明的袋子里装有5个红球和若干个白球,它们除颜色外其余完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计袋中的白球大约有()个A.10 B.15 C.20 D.259.在Rt△ABC中,∠C=90°,若cosB=,则∠B的度数是()A.90° B.60° C.45° D.30°10.在平面直角坐标系中,抛物线经过变换后得到抛物线,则这个变换可以是()A.向左平移2个单位 B.向右平移2个单位C.向左平移8个单位 D.向右平移8个单位二、填空题(每小题3分,共24分)11.如图所示平面直角坐标系中,点A,C分别在x轴和y轴上,点B在第一象限,BC=BA,∠ABC=90°,反比例函数y=.(x>0)的图象经过点B,若OB=2,则k的值为_____.12.如图,正方形的边长为,在边上分别取点,,在边上分别取点,使.....依次规律继续下去,则正方形的面积为__________.13.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_____.14.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.15.如图,在Rt△ABC中,∠ACB=90°,AC=BC=,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是_____.16.如图,小华同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,使斜边DF与地面保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边,,测得边DF离地面的高度,,则树AB的高度为_______cm.17.四边形ABCD是☉O的内接四边形,,则的度数为____________.18.如图,是一个立体图形的三种视图,则这个立体图形的体积为______.三、解答题(共66分)19.(10分)如图,已知中,,是的中点,.求证:四边形是菱形.20.(6分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.21.(6分)某商场销售一种成本为每件元的商品,销售过程中发现,每月销售量(件)与销售单价(元)之间的关系可近似看作一次函数.商场销售该商品每月获得利润为(元).(1)求与之间的函数关系式;(2)如果商场销售该商品每月想要获得元的利润,那么每件商品的销售单价应为多少元?(3)商场每月要获得最大的利润,该商品的销售单价应为多少?22.(8分)如图,某中学一幢教学楼的顶部竖有一块写有“校训”的宣传牌,米,王老师用测倾器在点测得点的仰角为,再向教学楼前进9米到达点,测得点的仰角为,若测倾器的高度米,不考虑其它因素,求教学楼的高度.(结果保留根号)23.(8分)用适当的方法解方程:(1)x2+2x=0(2)x2﹣4x+1=024.(8分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.25.(10分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图所示:(1)一月份B款运动鞋的销售量是A款的80%,则一月份B款运动鞋销售了多少双?(2)第一季度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量)(3)结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.26.(10分)已知抛物线的对称轴是直线,与轴相交于,两点(点在点右侧),与轴交于点.(1)求抛物线的解析式和,两点的坐标;(2)如图,若点是抛物线上、两点之间的一个动点(不与、重合),是否存在点,使四边形的面积最大?若存在,求点的坐标及四边形面积的最大值;若不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【分析】先求出口袋中蓝球的个数,再根据概率公式求出摸出一个球是蓝球的概率即可.【详解】设口袋中蓝球的个数有x个,根据题意得:=,解得:x=4,则随机摸出一个球是蓝球的概率是=;故选:D.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.2、C【分析】根据圆周角定理求出∠A,根据圆内接四边形的性质得出∠DCE=∠A,代入求出即可.【详解】∵∠BOD=130°,∴∠A=∠BOD=65°,∵四边形ABCD为⊙O的内接四边形,∴∠DCE=∠A=65°,故选:C.【点睛】本题考查了圆周角定理,圆内接四边形的性质的应用,注意:圆内接四边形的对角互补,并且一个外角等于它的内对角.3、C【解析】用因式分解法解一元二次方程即可.【详解】∴或∴,故选C.【点睛】本题主要考查一元二次方程的解,掌握解一元二次方程的方法是解题的关键.4、B【分析】设白球个数为个,白球数量袋中球的总数=1-14=1.6,求得【详解】解:设白球个数为个,根据题意得,白球数量袋中球的总数=1-14=1.6,所以,解得故选B【点睛】本题主要考查了用评率估计概率.5、A【分析】根据黄金分割点的定义和得出,代入数据即可得出AP的长度.【详解】解:由于P为线段AB=2的黄金分割点,且,
则.
故选:A.【点睛】本题考查了黄金分割.应该识记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的.6、B【分析】根据随机事件的定义逐项判断即可.【详解】A、点数之和等于1,是不可能事件,不合题意;B、点数之和等于9,是随机事件,符合题意;C、点数之和大于1,是必然事件,不合题意;D、点数之和大于12,是不可能事件,不合题意;故选:B【点睛】本题考查事件的分类,事件根据其发生的可能性大小分为必然事件、随机事件、不可能事件.随机事件是指在一定条件下,可能发生也可能不发生的事件.7、C【分析】由可得到∽,依据平行线分线段成比例定理和相似三角形的性质进行判断即可.【详解】解:A.∵,∴,故不正确;B.∵,∴,故不正确;C.∵,∴∽,∽,,.,故正确;D.∵,∴,故不正确;故选C.【点睛】本题主要考查的是相似三角形的判定和性质,熟练掌握相似三角形的性质和判定定理是解题的关键.8、C【分析】由摸到红球的频率稳定在0.2附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】设白球个数为x个,∵摸到红色球的频率稳定在0.2左右,∴口袋中得到红色球的概率为0.2,∴,解得:x=20,经检验x=20是原方程的根,故白球的个数为20个.故选C.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.9、B【分析】根据锐角三角函数值,即可求出∠B.【详解】解:∵在Rt△ABC中,cosB=,∴∠B=60°故选:B.【点睛】此题考查的是根据锐角三角函数值求角的度数,掌握特殊角的锐角三角函数值是解决此题的关键.10、B【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】y=(x+5)(x-3)=(x+1)2-16,顶点坐标是(-1,-16).y=(x+3)(x-5)=(x-1)2-16,顶点坐标是(1,-16).所以将抛物线y=(x+5)(x-3)向右平移2个单位长度得到抛物线y=(x+3)(x-5),故选B.【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.二、填空题(每小题3分,共24分)11、1【分析】作BD⊥x轴于D,BE⊥y轴于E,则四边形ODBE是矩形,利用AAS证得△ABD≌△CBE,即可证得BD=BE,然后根据勾股定理求得B的坐标,代入y=.(x>0)即可求得k的值.【详解】如图,作BD⊥x轴于D,BE⊥y轴于E,∴四边形ODBE是矩形,∴∠DBE=90°,∵∠ABC=90°,∴∠ABD=∠CBE,在△ABD和△CBE中∴△ABD≌△CBE(AAS),∴BE=BD,∴四边形ODBE是正方形,∵OB=2,根据勾股定理求得OD=BD=2,∴B(2,2),∵反比例函数y=(x>0)的图象经过点B,∴k=2×2=1,故答案为1.【点睛】本题考查了反比例函数图象上点的坐标特征,三角形全等的判定和性质,求得B的坐标是解题的关键.12、【分析】利用勾股定理可得A1B12=a2,即正方形A1B1C1D1的面积,同理可求出正方形A2B2C2D2的面积,得出规律即可得答案.【详解】∵正方形ABCD的边长为a,,∴A1B12=A1B2+BB12==a2,A1B1=a,∴正方形A1B1C1D1的面积为a2,∵,∴A2B22==()2a2,∴正方形A2B2C2D2的面积为()2a2,……∴正方形的面积为()na2,故答案为:()na2【点睛】本题考查正方形的性质及勾股定理,正确计算各正方形的面积并得出规律是解题关键.13、1【分析】根据众数的出现次数最多的特点从数据中即可得到答案.【详解】解:在这组数据中出现次数最多的是1,所以这组数据的众数为1,故答案为:1.【点睛】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.14、【解析】根据弧长公式可得:=,故答案为.15、【解析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【详解】解:如图,∵∠ACB=90°,AC=BC=,∴AB==,∴S扇形ABD==,又∴Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故答案是:.【点睛】本题考查了扇形的面积公式:S=,也考查了勾股定理以及旋转的性质.16、420【分析】先判定△DEF和△DBC相似,然后根据相似三角形对应边成比例列式求出BC的长,再加上AC即可得解.【详解】解:在△DEF和△DBC中,∠D=∠D,∠DEF=∠DCB,∴△DEF∽△DCB,∴,解得BC=300cm,∵,∴AB=AC+BC=120+300=420m,即树高420m.故答案为:420.【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例的性质,比较简单,判定出△DEF和△DBC相似是解题的关键.17、130°【分析】根据圆内接四边形的对角互补,得∠ABC=180°-∠D=130°.【详解】解:∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠D=180°,∵∠D=50°,∴∠ABC=180°-∠D=130°.故答案为:130°.【点睛】本题考查了圆内接四边形的性质,圆内接四边形对角互补.18、【分析】根据该立体图形的三视图可判断该立体图形为圆柱,且底面直径为8,高为8,根据圆柱的体积公式即可得答案.【详解】∵该立体图形的三视图为两个正方形和一个圆,∴该立体图形为圆柱,且底面直径为8,高为8,∴这个立体图形的体积为×42×8=128,故答案为:128【点睛】本题考查由三视图判断几何体;利用该几何体的三视图得到该几何体底面半径、高是解题的关键.三、解答题(共66分)19、详见解析.【分析】根据直角三角形斜边上的中线的性质和等边三角形的判定定理推知△ACD为等边三角形,则可证平行四边形ACDE是菱形.【详解】证明:∵AE∥CD,AC∥ED,∴四边形ACDE是平行四边形.∵∠ACB=90°,D为AB的中点,∴CD=AB=AD.∵∠ACB=90°,∠B=30°,∴∠CAB=60°,∴△ACD为等边三角形,∴AC=CD,∴平行四边形ACDE是菱形.【点睛】本题考查了菱形的判定、平行四边形的判定、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质,证明四边形ACDE是平行四边形是解决问题的关键.20、答案见解析【分析】由BE=CF可得BF=CE,再结合AB=DC,∠B=∠C可证得△ABF≌△DCE,问题得证.【详解】解∵BE=CF,∴BE+EF=CF+EF,即BF=CE.在△ABF和△DCE中,∴△ABF≌△DCE,∴∠A=∠D.【点睛】本题考查了全等三角形的判定和性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握全等三角形的判定和性质.21、(1);(2)销售单价应为元或元;(3)定价每件元时,每月销售新产品的利润最大.【分析】(1)根据:月利润=(销售单价-成本价)×销售量,从而列出关系式;(2)令w=2000,然后解一元二次方程,从而求出销售单价;(3)把(1)中得到的解析式及配方,利用二次函数的性质解答即可.【详解】(1),(2)由题意得,,解得:,,∴每月想要获得元的利润,销售单价应为元或元.(3),∵,∴当时,有最大值,答:定价每件元时,每月销售新产品的利润最大.【点睛】本题考查了二次函数的应用,销售问题的数量关系:利润=每件利润×销售量的运用,二次函数与一元二次方程的关系以及二次函数的性质,解答时求出函数的解析式是关键.22、教学楼DF的高度为.【分析】延长AB交CF于E,先证明四边形AMFE是矩形,求出EF=AM=3,再设DE=x米,利用Rt△BCE得到AE=x+12,再根据Rt△ADE得到,即可得到x的值,由此根据DF=DE+EF求出结果.【详解】如图,延长AB交CF于E,由题意知:∠DAE=30,∠CBE=45,AB=9米,四边形ABNM是矩形,∵四边形ABNM是矩形,∴AB∥MN,∵CF⊥MN,∴∠AEC=∠MFC=90,∵∠AMF=∠MFC=∠AEF=90,∴四边形AMFE是矩形,∴EF=AM=3,设DE=x米,在Rt△BCE中,∠CBE=45,∴BE=CE=x+3,∵AB=9,∴AE=x+12,在Rt△ADE中,∠DAE=30,∴,∴,解得:,∴DF=DE+EF=(米).【点睛】此题考查利用三角函数解决实际问题,解题中注意线段之间的关系,设未知数很主要,通常是设所求的量,利用图中所给的直角三角形,表示出两条边的长度,根据度数即可列得三角函数关系式,由此解决问题.23、(1)x1=0,x2=﹣2;(2)x1=2,x2=2.【分析】根据方程的特点可适当选择解方程的方法,利用因式分解法、配方法解一元二次方程即可得到答案.【详解】(1)或所以,(2),即所以,【点睛】本题考查了解元二次方程的方法,能够根据题目的结构特点选择合适的方法解一元二次方程,熟悉直接开平方法、配方法、公式法以及因式分解法的具体步骤是解题的关键.24、(1)见解析(2)见解析【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四边形ADCF是菱形,证明如下:∵AF∥BC,AF=DC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形25、(1)40;(2)39000;(3)答案不唯一,详见解析【分析】(1)用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出算式,再进
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中医药学概论试题及答案
- 随州市重点中学2024-2025学年数学高二第二学期期末达标检测模拟试题含解析
- 企业财务数据安全保密及员工行为规范合同
- 全球化市场拓展与外贸企业知识产权保护合同
- 车辆赠与合同范本及赠与条件约定
- 采石场土地及矿产资源开采权移交合同
- 餐饮业人力资源招聘与配置顾问合同
- 精细化管理餐饮业厨师岗位劳动合同
- 团工委工作计划-团委团支部工作计划
- 学生批量请假管理制度
- 感悟亲情亲情类作文指导
- 王春武-农药干悬浮剂(DF)项目研究与开发
- 幼儿启蒙12电子狗机器人课件
- 四川康美泰卫生用品有限公司生态康护用品研发及产业化项目环境影响报告
- 《好的数学:数的故事》读书笔记模板
- 机床数控技术PPT完整全套教学课件
- 2023国家开放大学:《人文英语1》形考答案解析5-8unit
- 土溶洞处理监理实施细则
- 道路危险货物运输安全标准化手册
- 名校版初中物理“公式+考点+方法技巧”大汇编
- 医院消毒供应中心CSSD专科知识《CSSD器械消毒与干燥方式的正确选择》精美培训课件
评论
0/150
提交评论